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Abstract

We specify and estimate a time-varying Markov model of COVID-19 cases

for the US in 2020. We find that the estimated level of undetected infections

spiked in March and remained elevated through May. However, since late April

estimated undetected infections have generally declined though it was not until

June or July that detected cases exceeded the estimated number of undetected

cases. Our results suggest that the substantial increase in testing capacity

in the US has identified a higher percentage of infections. However, these

findings also indicate that much of the increase in the number of positive tests

since spring represents a true increase in new cases as opposed to an increase

resulting from more testing. According to our estimation, more than 20% of

the US population has been infected by the Covid-19 virus which is consistent

with other published estimates. One shortcoming of our analysis is that we are

not able to condition our estimates on the age of people infected or hospitalized

which may cause us to underestimate the current number of undetected cases.
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1 Introduction and Summary of Findings

Having an accurate estimate of total infections can help planners make decisions

about testing policy and economic openness, let business leaders better understand

risks to their workers and customers, and inform economic projections. However,

one of the challenges facing policymakers, business leaders, and the general public

in understanding the spread of COVID-19 is the fact that many cases go undetected

because of testing shortages or infected individuals not seeking a test, for example,

asymptomatic individuals may not even consider the need for a test (Wu et al. (2020)).

Unfortunately, the number of undetected cases, while hard to estimate, is much larger

than the confirmed cases due to the vast amount of asymptomatic patients, which

significantly undermines estimations of the total number of cases. As shown in the

study by Friedman et al. (2020), most models predict the total number to be at least

two to three times larger than the confirmed cases.

In fact, at the early stage of the pandemic, the number of positive tests in the US

grew steadily faster than the number of hospitalizations. Likewise, hospitalizations

have grown more quickly than deaths attributed to COVID-19. A very simple way

to understand the disconnect between deaths and reported new cases is to estimate

the total number of cases nationwide using lagged data on the number of deaths and

recent estimates for infection fatality rates (see Meyerowitz-Katz and Merone (2020)).

Figure 1 shows that these “death-implied” estimates suggest that the number of new

cases in the US rose rapidly in March, then levelled off and started to decrease in

April. This is obviously at odds with the number of new positive tests which was

quite low comparing to the ”death-implied” estimates until late June.

As vaccines become increasingly available, having accurate estimates of the cu-

mulative number of cases is important because it could affect how vaccines are dis-

tributed. Specifically, in the context of a vaccination program, those already effected

may already have immunity (if only temporarily) and so-called “herd immunity”

could be achieved more quickly by deferring vaccination of those already infected

(Randolph and Barreiro (2020)). Likewise, knowing the cumulative number of total

infections may suggest how many people need to be vaccinated to achieve herd im-

munity. Therefore, estimation of the dynamics of total infections may provide better

information on population immunity and thus enable planners to better distribute

vaccines, make more informed public health decisions, and ultimately optimize social
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Figure 1: New Cases in the US (per 100,000, 7-day moving average).
The red line in the figure shows the death implied new cases, which are calculated using the 7-day
average of new reported deaths in the US lagged by 14 days (to reflect the average time between
contracting COVID-19 and death) divided by the infection fatality rate of 0.68% estimated by
Meyerowitz-Katz and Merone (2020). The confidence band is calculated using the 7-day average
of new reported deaths in the US lagged by 14 days divided by the 95% confidence interval of the
estimated infection fatality rate. The blue line in the figure shows the reported new cases.

and economic well-being of the country.

To estimate the gap between observed and total cases, we use a variant of a

standard time-varying Markov model to infer the number of undetected cases using

easily observable data on reported cases, hospitalizations and deaths at the state and

national level. Of course, other models have been proposed for estimating the number

of undetected infections and we compare our results to some of these. Our model has

the advantage of simplicity and ease of estimation. Specifically, in our analysis, we

examine a standard 5-state time-varying Markov model based on Gourieroux and

Jasiak (2020) (and cites therein) and apply it to data in the US and nine individual

states. In our model the population is either susceptible (S), infected and undetected

(IU), infected and detected (ID), hospitalized (H), or deceased (D). Recovered cases

re-enter the susceptible pool. States are mutually exclusive so we track hospitalized

separately from infected and detected. As conditioning variables in our analysis

we include both the testing positivity rate and the intensity of testing (i.e., tests

conducted per 100,000) and find that these are important factors in the estimation
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with intuitive relations to infection probabilities. The model provides estimates of

undetected infections that are plausible and the model fits observed levels of positive

cases, hospitalizations and deaths well. We examine two different versions of the

model and obtain similar results from both.

We find that the estimated IU was high in March and April. Since then, estimated

IU has declined substantially but according to our estimates it was not until late-June

or early-July that the number of detected cases exceeded the number of undetected

cases. Our results suggest that the substantial increase in testing capacity has been

successful in identifying a much higher percentage of infections. However, it also

suggests that much of the increase in the number of positive tests since October

represents a true increase in new cases as opposed to an increase resulting from more

testing. According to our estimation, by the end of November about 23% of the US

population has been infected by the Covid-19 virus, which suggests that we are still

a long way from herd immunity but that vaccinations. Yet, if vaccinations could be

prioritized based on past infection, this represents a substantial base of the population

which may already be immune. One concern about our analysis is that we are not

able to condition on the age of those with detected cases or who are hospitalized, and

consequently, we may underestimate undetected cases if the age of those infected is

declining on average. Our estimates could also underestimate cases if the quality of

care has improved over time and reduced hospitalization and death rates in a way

the model does not capture.

2 Model

The latent individual history variable Yi,t, for individual i = 1, ..., N at time t =

1, ..., T , is qualitative polytomous with J alternatives denoted by j = 1, ..., J . As

in Gourieroux and Jasiak (2020), we assume that Yi,t have the same marginal dis-

tribution for all individuals i = 1, ..., N at t fixed, which can be summarized by the

J-dimensional vector p(t). The j-th component of the marginal distribution is

pj(t) = P (Yi,t = j).
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In addition, the individual history variable follows a Markov process with time-varying

transition matrix P [p(t− 1); θ], which gives

p(t) = P [p(t− 1); θ]′p(t− 1), t = 2, ..., T,

with θ being a vector of parameters.

The data of individual histories may not be available in practice. With the as-

sumptions of independent individual histories and homogeneous population of risks,

the J-dimensional cross-sectional frequency vector f(t), where fj(t) is the state j fre-

quency of the population, can be seen as the sample counterpart of p(t). However, the

cross-sectional frequencies are only partially observed. A state aggregation matrix A

is used to account for the unobserved states and the observations are Ât = Af(t) for

t = 1, ..., T , where A is a K × J matrix of full rank K. The parameters of interest,

θ and the sequence of the unobserved component of p(t), can then be estimated by

solving the following optimization problem,

(p̂(1), ..., p̂(T ), θ̂) = argmin
T∑
t=2

‖p(t)− P [p(t− 1), θ]′ p(t− 1)‖22 (1)

s.t. Ap(t) = Af(t) = Ât, t = 1, ..., T,

where ‖.‖2 denotes the Euclidean norm.

To model the COVID-19 propagation, we consider a Markov process with 5 states:

1 = S, for susceptible, 2 = IU , for Infected and Undetected, 3 = ID, for Infected and

Detected, 4 = H for Hospitalized, and 5 = D for Deceased. The sum of the frequencies

across all the five states equals to the size of the population. For simplicity, we assume

no immunity in our estimation, hence the recovered cases re-enter the susceptible pool.

This assumption lets us avoid having an unobservable recovered state but will have

little impact on estimation for low levels of overall infection.

The transition matrix P [p(t− 1); θ] of the Markov process is defined as
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S IU ID H D


S 1− pi pi(1− pd) pipd 0 0

IU p21 (1− p21 − p24)(1− pd) (1− p21 − p24)pd p24 0

ID p31 0 1− p31 − p34 p34 0

H p41 0 0 1− p41 − p45 p45

D 0 0 0 0 1

with

pi = logist (a1 + a2 (p2(t− 1) + p3(t− 1))) + a3xt),

pd = logist (b1 + b2yt) ,

where logist(x) = 1/[1 + exp(−x)] is the logistic function, i.e. the inverse of the logit

function. The probability of infected pi follows a multinomial logit model for the

competing propagation driven by lagged IU and lagged ID, and it also depends on

the testing positivity rate xt. Conditioning on being infected, the probability of being

detected pd is a function of testing intensity yt. Each row of the transition matrix sums

to one by construction. The structure of zeros indicates that one cannot go backward

from ID to IU , patients who died are hospitalized before death, the hospitalized

patients will stay in hospital until they recover or die, and death is considered an

absorbing state.

In addition, we consider two model specifications for the transition probabili-

ties from state IU and ID to state H. The basic specification assumes constant

transition probabilities p24 and p34. In this model, there are 11 parameters in θ =

[a1, a2, a3, b1, b2, p21, p24, p31, p34, p41, p45]
′. The full specification assumes time-varying

transition probabilities driven by the lagged frequency of the corresponding state with

p24 = logist (c1 + c2p2(t− 1)) ,

p34 = logist (d1 + d2p3(t− 1)) ,

in which θ = [a1, a2, a3, b1, b2, c1, c2, d1, d2, p21, p31, p41, p45]
′ has 13 parameters. The

results from these two versions of the model are very similar so we only report the

results from the basic model (but results from the full model are available on request).

Empirically, IU(t) and ID(t) represent the state of currently infected excluding

those hospitalized. The frequency of ID(t) is observable by assumption, while IU(t)
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is the unobserved state of unidentified infections and will be considered as additional

quantities of interest to be estimated jointly. Also, the frequencies of H(t) and D(t)

are both observable. Therefore, we have the state aggregation matrix A expressed as

A =

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

 .
3 Data, Estimation and Results

We estimate the two specifications of the time-varying Markov model on the national

Covid-19 propagation data of the US over the period of 271 days between March

4 to November 29, 2020. We use the daily data reported by The Covid Tracking

Project. The frequency of ID(t) is measured by the rolling 2-week sum of the new

positive tests in the US, which assumes that a person with positive test will either be

hospitalized or recover within 14 days. The frequency of H(t) is the actual number of

hospitalized in US on any given date and the frequency of the absorbing state D(t) is

measured by the cumulative deaths caused by COVID-19 in the US. In constructing

the cross-sectional frequency vector f(t), we do everything in per 100, 000 population

to facilitate interpretation as well as comparison to estimated infection rates across

geographies.
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Figure 2: The Frequencies of the Observed States in the US (per 100,000).
The top panel shows the time series data for the frequency of state ID(t), which are measured by
the rolling 2-week sum of the new positive tests in the US. The middle panel shows the time series
data for the frequencies of state H(t), which is measured by the actual number of hospitalized in
the US at date t. The bottom panel shows the time series data for the frequencies of state D(t),
which is measured by the sum of deaths caused by COVID-19 in the US up until date t.

The daily evolutions of the observed components of f(t) for the US are displayed

in Figure 2. For the two conditioning variables, the test positivity rate xt is measured

by the weekly moving average of the testing positivity rate (i.e., out of all tests) and

the test intensity yt is measured by the rolling 7-day average of tests per day per

100, 000 population as of date t. Figure 3 shows the plots of these two conditioning

variables calculated from the US data.
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The initial frequency is set equal to 100, 000 for state S(0) and 0 for all other states.

The model parameters θ and the series of frequencies of the unobserved state IU(t)

are then estimated by solving the optimization problem in Equation (1) numerically

using the fminsearch function in Matlab. The estimates of the parameters for the

basic model on US data are provided in Table 1. The mean fitted values are within

2.36% of observed values. The comparisons of fitted and observed frequencies for

state ID, state H and state D are shown in Figure 6 in an appendix. We see that

the estimated frequencies track the observations closely.

Figure 3: The Conditioning Variables (xt and yt).
The top panel shows the time series data of the test positivity rates xt, which is measured by the
weekly moving average of the rates of positivity in testing (i.e., out of all tests). The bottom panel
shows the time series data of test intensity yt, which is measured by the rolling 7-day average of
tests per day per 100, 000 population as of date t.

In Table 1, p21 = 0.2979, which corresponds to a less than 1 week average recovery

time of for state IU , and p31 = 0.0461, which represents an average recovery time

around 20 days for state ID. The model estimates that it takes longer for a patient

in the detected state to recover, which is reasonable considering it is more likely that

patients with severe cases will get tested (and be detected) thus the overall health

condition of state ID is worse than state IU . This is also consistent with the estimated

transition probabilities to state H. The probability of transition to state H is 0.0057
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from state ID, which is higher than the probability of 0.0013 from state IU . The

estimates of p33 is 0.9482, which means that people stay in the state ID for an average

around 18 days and are then either hospitalized or recover. This is roughly consistent

with how we construct the variable representing state ID (i.e. rolling 2-week sum

of the positive tests). The mortality rate conditional on being hospitalized is 2.25%,

which is higher than the estimated value of 0.68% for the overall infection-fatality

rate of COVID-19 in Meyerowitz-Katz and Merone (2020). This is not surprising

considering that the severity of the illness is higher for the hospitalized patients than

the average severity of all cases. We have a large positive estimate a3 meaning that

the probability of being infected, pi, is increasing with higher positivity rate of tests.

The estimate of b2 is also positive, which means that if a person is infected, the

probability of being detected, pd, is increasing with the intensity of testing.

a1 a2 a3 b1 b2
−8.4486 −0.0030 25.7573 −5.0047 0.0120

1 = S 2 = IU 3 = ID 4 = H 5 = D
2 = IU 0.2979 Time-varying Time-varying 0.0013 0
3 = ID 0.0461 0 0.9482 0.0057 0
4 = H 0.0805 0 0 0.8970 0.0225
5 = D 0 0 0 0 1

Table 1: Parameter Estimates of the Basic Model

The time series of the frequencies of state IU(t) are the quantities of primary

interest. Figure 4 shows the estimated frequencies of the state IU (dashed red line) and

the observed frequencies of the state ID (dash-dot blue line). In addition, we calculate

the total infections per 100,000 population at time t by the summation of ID(t) and

IU(t). The solid black line in Figure 4 shows the time series of total infections

per 100,000 population and the green line shows the evolution of the unidentified

percentage of the total cases with corresponding values on the right y-axis. From

Figure 4, we find that the estimated IU grew rapidly since mid-March until peaking

in early-April. After that, estimated IU has declined substantially but according to

our estimates it was not until around July 1st that the number of detected cases

exceeded the number of undetected cases. Our results suggest that the substantial

increase in testing capacity has been successful in identifying a much higher percentage

of infections. However, it also suggests that much of the increase in the number of
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Figure 4: The Estimated Frequencies of State IU and Total Infections.
The figure shows the estimated frequencies of state IU and total infections. The dash-dot blue line
is the observed frequencies of state ID and the dashed red line is the estimated frequencies of state
IU . The solid black line is the estimated frequencies of total cases (e.g. total frequencies of state
IU and state ID). The green line with corresponding values on the right y-axis shows the evolution
of unidentified percentage of the total cases.

positive tests since October is in fact an increase in new cases as opposed to an

increase related to a higher number of tests. Our results are consistent with models

discussed in Friedman et al. (2020).1

3.1 Estimates for individual states

We also estimate models for nine individual states including Arizona, California,

Florida, Georgia, North Carolina, New Jersey, New York, Pennsylvania and Texas, of

which the total residential population account for nearly half of the US population.

We believe that these states constitute a good representation of the overall demo-

graphic not only because of their population, but also since they have experienced

the pandemic in very different ways since March in terms of the trends of confirmed

cases, hospitalizations, and deaths. Despite the similar recent surge in confirmed

1The estimates of total infections using these models are on https://ourworldindata.org/covid-
models.
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Covid-19 cases and hospitalizations, these data peaked in late-April for New York,

New Jersey and Pennsylvania, while the other states have their peaks in mid-July.

State PA CA NJ NY
a1 −7.892 −8.624 −8.299 −8.333
a2 −0.007 −0.003 −0.004 −0.003
a3 27.728 31.092 58.942 38.874
b1 −4.461 −5.297 −4.840 −4.909
b2 0.018 0.011 0.007 0.006
p21 0.409 0.483 0.121 0.222
p24 0.003 0.001 0.002 0.003
p31 0.078 0.039 0.124 0.052
p34 0.005 0.005 0.003 0.013
p41 0.088 0.053 0.097 0.146
p45 0.022 0.020 0.037 0.051
%RMSE 4.68% 8.22% 6.06% 5.89%

State NC AZ TX GA FL
a1 −8.120 −7.705 −7.783 −8.696 −7.756
a2 −0.005 −0.003 −0.004 −0.006 −0.003
a3 37.847 15.302 25.073 30.044 17.278
b1 −4.748 −3.935 −4.068 −4.775 −3.745
b2 0.010 0.016 0.013 0.018 0.013
p21 0.351 0.507 0.482 0.407 0.644
p24 0.000 0.001 0.000 0.001 0.006
p31 0.043 0.102 0.094 0.060 0.099
p34 0.006 0.006 0.010 0.004 0.003
p41 0.050 0.072 0.106 0.038 0.046
p45 0.017 0.020 0.018 0.020 0.028
%RMSE 6.64% 15.15% 15.72% 4.77% 10.54%

Table 2: Model Parameters for Individual States

The historical data of Covid-19 for each state is from The Covid Tracking Project.

The time series data used in model estimation is constructed in the same way as the

US data. Figure 7 - 9 in the appendix show the daily evolutions of ID(t), H(t)

and D(t) for the nine states. The two conditioning variables, test positivity rate xt

and test intensity yt for each state are shown in Figure 10 and 11 in the appendix.

The estimates of model parameters and the goodness-of-fit measures (percentage root

mean square error (%RMSE)) for the nine states are in Table 2. Table 3 shows the

average of the estimated parameters across these individual states. We calculate the
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Figure 5: The Estimated Frequencies of State IU and Total Infections for
the US using Average State Parameters.
See Figure 4 for details.

estimated frequencies for state IU(t) and total infections for each state using both

the state parameters and the average parameters. The results are shown in Figure

12 - 20.

a1 a2 a3 b1 b2
−8.134 −0.004 31.353 −4.531 0.012

1 = S 2 = IU 3 = ID 4 = H 5 = D
2 = IU 0.403 Time-varying Time-varying 0.002 0
3 = ID 0.077 0 0.917 0.006 0
4 = H 0.077 0 0 0.8970 0.026
5 = D 0 0 0 0 1

Table 3: Average of Model Parameters

According to our estimation, all states in our model experienced a rapid increase in

total infections during April, though some of these states only observed a mild spread

of virus according to the confirmed cases. The surge in total cases during this period

were mainly driven by the infected and unidentified cases, while the later increase

were driven by confirmed cases. We also re-estimate the frequencies of state IU(t)
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and total infections for the US using the average of state parameters. The results are

shown in Figure 5 and we find that the overall pattern is similar comparing to the

results in Figure 4.

3.2 Estimates for cumulative cases

Having accurate estimates of the cumulative infections is important as vaccines be-

come increasingly available. It may suggest what percentage of the population is

immune to the virus if those already infected are not susceptible, or likewise how

many people need to get a vaccine before we reach herd immunity. We estimate

the cumulative total cases based on the data of confirmed cases and our estimated

infected and unidentified cases. The cumulative total cases CI(T ) up to date T is

CI(T ) = CD(T ) + CU(T ),

where CD(T ) is the cumulative confirmed cases and CU(T ) is the cumulative unde-

tected cases. Our data set has the cumulative number of positive tests and we use it

as a measure of cumulative confirmed cases. Using our estimated model, we calculate

the cumulative undetected cases as

CU(T ) =
T∑
t=1

pi(t)(1− pd(t))S(t− 1)−
T∑
t=1

(1− p21 − p24)pd(t)IU(t− 1). (2)

The first summation in Equation (2) is the total number of daily new entrants to

state IU , which measures the total number of patients who have been through the

infected and unidentified state. According to our model specification, a proportion

of patients in state IU transit to state ID at each t and they were “detected” and

included into the cumulative number of positive tests, therefore, we subtract this

portion of patients from the total number of patients who been in state IU to get the

cumulative number of undetected cases.

The estimated cumulative infections as of November 29, 2020 are shown in Table

4. We also do the estimation using the state average parameters and the results are

in Table 5. As shown in Table 4, our estimated percentage of undetected infections

out of total infections is 82.34% for the US, which is similar to the results of 79.21%
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Panel (a) Number of Infections
State Confirmed Undetected Total % Undetected Infections
AZ 325, 995 1, 606, 040 1, 932, 035 83.13%
CA 1, 198, 934 7, 674, 817 8, 873, 751 86.49%
FL 976, 944 5, 534, 536 6, 511, 480 84.99%
GA 420, 601 1, 893, 227 2, 313, 828 81.82%
NC 361, 778 1, 748, 355 2, 110, 133 82.86%
NJ 334, 114 3, 200, 884 3, 534, 998 90.55%
NY 641, 161 10, 414, 697 11, 055, 858 94.20%
PA 357, 196 2, 747, 136 3, 104, 332 88.49%
TX 1, 157, 273 7, 018, 290 8, 175, 563 85.84%
State Sum 5, 773, 996 41, 837, 985 47, 611, 981 87.87%
US 13, 188, 777 61, 488, 270 74, 677, 047 82.34%

Panel (b) Infections per 100,000 Population
State Confirmed Undetected Total Population
AZ 4, 477 22, 061 26, 538 7, 280, 000
CA 3, 034 19, 425 22, 459 39, 510, 000
FL 4, 548 25, 766 30, 314 21, 480, 000
GA 3, 960 17, 827 21, 787 10, 620, 000
NC 3, 445 16, 651 20, 096 10, 500, 000
NJ 3, 762 36, 046 39, 808 8, 880, 000
NY 3, 296 53, 546 56, 842 19, 450, 000
PA 2, 790 21, 462 24, 252 12, 800, 000
TX 3, 990 24, 201 28, 191 29, 000, 000
State Sum 3, 619 26, 227 29, 847 159, 520, 000
US 4, 018 18, 735 22, 753 328, 200, 000

Table 4: Estimated Cumulative Infections as of Nov 29, 2020 (state parameters)

and 74.23% in Gu (2020) and Friedman et al. (2020) respectively2. Based on our

estimation using individual state parameters, the cumulative number of cases in the

US up to November 29 is 74, 677, 047, which accounts for 22.75% of the US population.

The infections per 100, 000 population are quite different across states. New York and

New Jersey, which are the early epicenters of the Covid-19 pandemic, have a much

higher percentage of population being infected.

2Please see https://ourworldindata.org/covid-models for details.
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Panel (a) Number of Infections
State Confirmed Undetected Total % Undetected Infections
AZ 325, 995 2, 562, 268 2, 888, 263 88.71%
CA 1, 198, 934 6, 026, 460 7, 225, 394 83.41%
FL 976, 944 6, 602, 092 7, 579, 036 87.11%
GA 420, 601 3, 427, 286 3, 847, 887 89.06%
NC 361, 778 1, 573, 530 1, 935, 308 81.31%
NJ 334, 114 3, 471, 724 3, 805, 838 91.22%
NY 641, 161 7, 054, 515 7, 695, 676 91.67%
PA 357, 196 4, 623, 488 4, 980, 684 92.83%
TX 1, 157, 273 7, 221, 290 8, 378, 563 86.18%
State Sum 5, 773, 996 42, 562, 656 48, 336, 652 88.05%
US 13, 188, 777 80, 582, 946 93, 771, 723 85.93%

Panel (b) Infections per 100,000 Population
State Confirmed Undetected Total Population
AZ 4, 477 35, 196 39, 673 7, 280, 000
CA 3, 034 15, 253 18, 287 39, 510, 000
FL 4, 548 30, 736 35, 284 21, 480, 000
GA 3, 960 32, 272 36, 232 10, 620, 000
NC 3, 445 14, 986 18, 431 10, 500, 000
NJ 3, 762 39, 096 42, 858 8, 880, 000
NY 3, 296 36, 270 39, 566 19, 450, 000
PA 2, 790 36, 121 38, 911 12, 800, 000
TX 3, 990 24, 901 28, 891 29, 000, 000
State Sum 3, 619 26, 681 30, 301 159, 520, 000
US 4, 018 24, 553 28, 571 328, 200, 000

Table 5: Estimated Cumulative Infections as of Nov 29, 2929 (average parameters)

4 Conclusion

We estimate a model of COVID-19 infections, hospitalizations, recoveries, and deaths.

The results of the estimation are intuitive and indicate a high percentage of undetected

cases early in our sample period followed by a decline to a much lower percentage

of undetected cases by July. Taken at face value, our results suggest that reported

cases in the US increasingly reflect the true number of infections. We also estimate

the model using data from nine individual states, which gives similar estimates on

total infections as well as the proportion of undetected cases. Nonetheless, our model

is fairly simple. Given anecdotal evidence that age of detected cases is changing
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through time, the estimation is also likely to benefit by conditioning estimates on

other variables such as the average age of hospitalized patients or the average age of

those testing positive.
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Appendix

Figure 6: The Observed and Estimated Frequencies.
The figure compares the observed frequencies with the estimated frequencies for state ID (top panel),
state H (middle panel) and state D (bottom panel). The dashed red line is the observed frequencies
and the solid blue line is the estimated frequencies.
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Figure 7: The Frequencies of State ID(t) for Individual States.
The figure shows the observed frequencies of state ID(t) of nine individual states. The time series
of ID(t) for the US is included for a better comparison, the same plot is also shown in the top panel
of Figure 2.
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Figure 8: The Frequencies of State H(t) for Individual States.
The figure shows the observed frequencies of state H(t) of nine individual states. The time series
of H(t) for the US is included for a better comparison, the same plot is also shown in the middle
panel of Figure 2.
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Figure 9: The Frequencies of State D(t) for Individual States.
The figure shows the observed frequencies of state D(t) of nine individual states. The time series
of D(t) for the US is included for a better comparison, the same plot is also shown in the bottom
panel of Figure 2.
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Figure 10: The Test Positivity Rates xt of Individual States.
The figure shows the time series data of the test positivity rates xt of nine individual states. The
time series of xt for the US is included for a better comparison, the same plot is also shown in the
top panel of Figure 3.
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Figure 11: The Test Intensity yt of Individual States.
The figure shows the time series data of the test intensity yt of nine individual states. The time
series of yt for the US is included for a better comparison, the same plot is also shown in the bottom
panel of Figure 3.
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(a) State Parameters

(b) Average Parameters

Figure 12: Estimated Frequencies of State IU and Total Infections (AZ)
See Figure 4 for more details.
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(a) State Parameters

(b) Average Parameters

Figure 13: Estimated Frequencies of State IU and Total Infections (CA)
See Figure 4 for more details.
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(a) State Parameters

(b) Average Parameters

Figure 14: Estimated Frequencies of State IU and Total Infections (FL)
See Figure 4 for more details.
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(a) State Parameters

(b) Average Parameters

Figure 15: Estimated Frequencies of State IU and Total Infections (GA)
See Figure 4 for more details.
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(a) State Parameters

(b) Average Parameters

Figure 16: Estimated Frequencies of State IU and Total Infections (NC)
See Figure 4 for more details.
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(a) State Parameters

(b) Average Parameters

Figure 17: Estimated Frequencies of State IU and Total Infections (NJ)
See Figure 4 for more details.
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(a) State Parameters

(b) Average Parameters

Figure 18: Estimated Frequencies of State IU and Total Infections (NY)
See Figure 4 for more details.

30



(a) State Parameters

(b) Average Parameters

Figure 19: Estimated Frequencies of State IU and Total Infections (PA)
See Figure 4 for more details.
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(a) State Parameters

(b) Average Parameters

Figure 20: Estimated Frequencies of State IU and Total Infections (TX)
See Figure 4 for more details.
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