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Does macroeconomic uncertainty increase or decrease aggregate growth and asset prices? To address this question, we de-

compose aggregate uncertainty into ‘good’ and ‘bad’ volatility components, associated with positive and negative innovations to
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output, and investment, and is positively related to valuation ratios, while bad uncertainty forecasts a decline in economic growth
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1. Introduction

How do changes in economic uncertainty affect macroeconomic quantities and asset prices? We show that the

answer to this question hinges on the type of uncertainty one considers. ’Bad’ uncertainty is the volatility that is

associated with negative innovations to macroeconomic quantities (e.g., output, consumption, earnings), and with

lower prices and investment, while ’good’ uncertainty is the volatility that is associated with positive shocks to these

variables, and with higher asset prices and investment.

To illustrate these two types of uncertainties, it is instructive to consider two episodes: (i) the high-tech revolution

of early-mid 1990’s, and (ii) the recent collapse of Lehman brothers in the fall of 2008. In the first case, and with the

introduction of the world-wide-web, a common view was that this technology would provide many positive growth

opportunities that would enhance the economy, yet it was unknown by how much? We refer to such a situation as

‘good’ uncertainty. Alternatively, the second case marked the beginning of the global financial crisis, and with many

of the ensuing bankruptcy cases one knew that the state of economy was deteriorating - yet, again, it was not clear by

how much? We consider this situation as a rise in ‘bad’ uncertainty. In both cases, uncertainty level rises relative to

its long-run steady-state level, yet, the first case coincides with an optimistic view, and the second with a pessimistic

one.

In this paper, we demonstrate that variations in good and bad uncertainty have separate and significant opposing

impacts on the real economy and asset prices. We use an extended version of the long-run risks model of Bansal

and Yaron (2004) to theoretically show conditions under which good and bad uncertainty have different impact on

prices. To make a meaningful distinction between good and bad uncertainty, we decompose, within the model,

the overall shocks to consumption into two separate zero-mean components (e.g., jumps) which capture positive

and negative growth innovations. The volatilities of these two shocks are time varying, and capture uncertainty

fluctuations associated with the positive and negative parts of the distribution of consumption growth. Thus, in the

model, valuation ratios are driven by three state variables: predictable consumption growth, good uncertainty, and bad

uncertainty. Consequently, the stochastic discount factor, and therefore risk premia, are determined by three sources

of risk: cash flow, good uncertainty, and bad uncertainty risks.

We show that with a preference for early resolution of uncertainty, the direct impact of both types of uncertainty

shocks is to reduce prices, though, prices respond more to bad than to good uncertainty. For prices to rise in response

to a good uncertainty shock there has to be an explicit positive link between good uncertainty and future growth

prospects – a feature that we impose in our benchmark model.2 We further show that the market price of good

uncertainty risk and its equity beta have the same (positive) sign. Thus, even though prices can rise in response to

good uncertainty, it commands a positive risk premium.

Overall the model’s key empirical implications include: (i) good uncertainty positively predicts future measures

2Backus et al. (2010) also feature a direct feedback from volatility to future growth. However, they focus on total volatility and show the

importance of this feedback for reconciling various lead-lag correlations between consumption growth and market returns.
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of economic activity, while bad uncertainty negatively forecasts future economic growth; (ii) good uncertainty fluc-

tuations are positively related to asset valuations and to the real risk-free rate, while an increase in bad uncertainty

depresses asset prices and the riskless yield; and (iii) the shocks to good and bad uncertainty carry positive and

negative market prices of risk, respectively, yet both contribute positively to the risk premium.3

We evaluate our model’s empirical implications by utilizing a novel econometric approach to identify good and

bad uncertainty from higher-frequency realized variation in the variables of interest (see Barndorff-Nielsen et al.

(2010)). Empirically, we use the ex-ante predictable components of the positive and negative realized semivariances

of industrial production growth rate as the respective proxies for good and bad uncertainty.4 In its limiting behavior,

positive (negative) semivariance captures one-half of the variation in any Gaussian symmetric movements in the

growth rate of the variable of interest, as well as the variation of any non-Gaussian positive (negative) component in

it. Thus, in our empirical work the positive (negative) semivariance captures the volatility component that is associated

with the positive (negative) part of the total variation of industrial production growth, and its predictive component

corresponds to the model concept for good (bad) uncertainty.

Consistent with the model, we document in the data that across various macroeconomic growth rates, and across

various horizons, good economic uncertainty positively predicts future growth. This evidence includes growth for

horizons of one to five years in consumption, output, investment, R&D, market earnings, and dividends. Similarly, we

find a negative relationship between bad uncertainty and future growth rates of these macro variables. Together, these

findings support the model feedback channel from macroeconomic uncertainty to future growth rates. Quantitatively,

the impact of uncertainty has a large economic effect on the macro variables. For example, the private GDP growth

increases by about 2.5% one year after a one standard deviation shock to good uncertainty, and this positive effect

persists over the next three years. On the other hand, bad uncertainty shocks decrease output growth by about 1.3%

one year after and their effects remain negative for several years. The responses of investment and R&D to these

shocks are even stronger. Both capital and R&D investment significantly increase with good uncertainty and remain

positive five years out, while they significantly drop with a shock to bad uncertainty. An implication of the offsetting

responses to good and bad uncertainty is that the measured responses to overall uncertainty are going to be muted.

Indeed, GDP growth declines only by about 0.25% after a shock to total uncertainty. The response to total uncertainty

is significantly weaker than that to bad uncertainty, which underscores the potential importance of decomposing

uncertainty into good and bad components.

The empirical evidence in the data is further consistent with the model’s key asset-pricing implications. We

document that the market price-dividend ratio and the risk-free rate appreciate with good uncertainty and decline

with bad uncertainty. Quantitatively, the market log price-dividend ratio rises by about 0.07 one year out in response

to a one standard deviation shock to good uncertainty and remains positive ten years afterward. Bad uncertainty

3Although both uncertainties carry positive risk premium, their covariance, which may capture a common component, could contribute nega-

tively to the risk premium.
4We use industrial production because high-frequency real consumption data is not available for the long sample.
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shock depresses the log price-dividend ratio by 0.06 on impact and remains negative for ten years out. Similar to the

macroeconomic growth rates, the response of the price-dividend ratio to total uncertainty is negative, but is understated

relative to the response to bad uncertainty. The evidence for the response of the price-earnings ratio is very similar to

that of the price-dividend ratio. In addition, consistent with the model, we show that both bad and good uncertainty

positively predict future excess returns and their volatility.

Finally, we estimate the market prices of good and bad volatility risks using the cross-section of asset returns

that includes the market return, 25 equity portfolios sorted on book-to-market ratio and size, and two bond portfolios

(Credit and Term Premium portfolios). We show that the market price of risk is positive for good uncertainty, while

it is negative for bad uncertainty. Moreover, asset returns have a positive exposure (beta) to good uncertainty risk,

and a negative exposure to bad uncertainty risk. Consequently, both good and bad uncertainty command a positive

risk premium, although the interaction of their shocks can contribute negatively to the total risk compensation, since

the good and bad uncertainty shocks are positively correlated. The market risk premium is 7.2% in the data relative

to 8.2% in the model. In the data, the value spread is 4.38%, which is comparable to 3.34% in the model. The size

spread is 4.39%, relative to 5.21% in the model. For the Credit premium portfolio the risk premium is 1.98% in the

data and 2.15% in the model, and the Term premium is 1.82% in the data relative to 0.64% in the model.

Related Literature. Our paper is related to a growing theoretical and empirical literature that documents the con-

nection between economic uncertainty, aggregate quantities, and asset prices. Our concept of economic uncertainty

refers to the time series volatility of shocks to economic quantity variables of interest (e.g., consumption and GDP

growth). This is distinct from other aspects of uncertainty, such as parameter uncertainty, learning, robust-control, and

ambiguity (see discussions in Pastor and Veronesi (2009), Hansen and Sargent (2010), Epstein and Schneider (2010)).

While there is a long standing and voluminous literature on the time-varying second moments in asset returns, the

evidence for time variation in the second moments of macro aggregates, such as consumption, dividends, earnings,

investment, and output, is more limited and recent. Kandel and Stambaugh (1991) is an early paper providing ev-

idence for stochastic volatility in consumption growth. More recently, McConnell and Perez-Quiros (2000), Stock

and Watson (2002), and Bansal et al. (2005b) provide supporting evidence that volatility measures based on macro

aggregates feature persistent predictable variation.

The evidence on time-varying volatility of macro aggregates has also instilled recent interest in examining the role

of uncertainty in production/DSGE models. Bloom (2009) shows that increased volatility, measured via VIX, leads

to an immediate drop in consumption and output growth rates as firms delay their investment decisions. Generally the

literature has emphasized a negative relationship between growth and uncertainty – see Ramey and Ramey (1995),

Gilchrist et al. (2010), Fernandez-Villaverde et al. (2011), and Basu and Bundick (2012) to name a few. Other

papers, such as Gilchrist and Williams (2005), Jones et al. (2005), Malkhozov and Shamloo (2010), and Kung and

Schmid (2010) feature alternative economic channels which can generate positive relationship between uncertainty

and investment and thus growth. In addition, Croce et al. (2012) and Pastor and Veronesi (2012) highlight the negative

impact of government policy uncertainty on prices and growth.
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In terms of asset prices, Bansal and Yaron (2004) show that with Epstein and Zin (1989) recursive preferences

and an IES larger than one, economic uncertainty is a priced risk, and is negatively related to price-dividend ratios.

More recently, Bansal et al. (2013) examine the implications of macroeconomic volatility for the time variation in

risk premia, for the return on human capital, and for the cross-section of returns. They develop a dynamic CAPM

framework for which one of the factors, in addition to the standard cash flow and discount rate risks, is aggregate

volatility. Campbell et al. (2012) also analyze the role of uncertainty in an extended version of the ICAPM. While

both papers document a significant role for uncertainty, Bansal et al. (2013) find both the betas and market price

of uncertainty risk to be negative, and thus uncertainty to positively contribute to equity risk premia, whereas the

evidence in Campbell et al. (2012) is more mixed in terms of whether assets have negative or positive exposure

(beta) to volatility. The empirical framework in this paper, allowing for two types of uncertainties, can in principle

accommodate several of these uncertainty effects.

Our framework features two types of macroeconomic uncertainties. In terms of estimating two types of uncertain-

ties, the literature has mainly focused on return-based measures. Patton and Sheppard (2011), Feunou et al. (2013),

and Bekaert et al. (2014) use return data to capture fluctuations in good and bad volatilities, and study their effects on

the dynamics of equity returns. Specifically, Patton and Sheppard (2011) and Feunou et al. (2013) use realized semi-

variance measures to construct the two volatilities, whereas we construct bad and good uncertainty measures directly

from the macro aggregates.

Our framework is also related to a recent literature which highlights non-Gaussian shocks in the fundamentals.

One analytically convenient specification that our framework accommodates and which is widely used features Pois-

son jumps in consumption dynamics (see e.g. Eraker and Shaliastovich (2008), Benzoni et al. (2011), Drechsler and

Yaron (2011), and Tsai and Wachter (2014) for recent examples). In another specification, which again can be ac-

commodated within our framework, the cash flow shocks are drawn from a Gamma distribution with a time-varying

shape parameter, in which case the consumption shock dynamics follow the good and bad environment specification in

Bekaert and Engstrom (2009). Finally, an alternative approach for generating time variation in higher-order moments

is provided in Colacito et al. (2013). They model shocks to expected consumption as drawn from a skew-normal distri-

bution with time-varying parameters and allow for a separate process for stochastic volatility. Our modeling approach

focuses on bad and good volatility as the key driving forces for time variation in consumption growth distribution, and

is largely motivated by our empirical analysis.

There is also a voluminous literature on the implications of time-varying higher-order moments of returns for risk

pricing. For example, Bansal and Viswanathan (1993) develops a nonlinear pricing kernel framework and shows its

improvement in explaining asset prices relative to a linear APT model, while Chabi-Yo (2012) develops an intertem-

poral capital asset pricing model in which innovations in higher moments are priced. The empirical literature identifies

these risks based on financial market data, and generally finds that left-tail risk is important for explaining the time

series and cross-section of returns above and beyond the market volatility risk; see e.g. Kapadia (2006), Adrian and
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Rosenberg (2008), Harvey and Siddique (2000), Chang et al. (2013), and Conrad et al. (2013).5

The rest of this paper is organized as follows. In Section 2 we provide a theoretical framework for good and bad

uncertainty and highlight their role for future growth and asset prices. Section 3 discusses our empirical approach to

construct good and bad uncertainty in the macroeconomic data. In Section 4 we show our empirical results for the

effect of good bad uncertainties on aggregate macro quantities and aggregate asset prices, and the role of uncertainty

risks for the market return and the cross-section of risk premia. Section 5 discusses the robustness of our key empirical

results, and the last Section provides concluding comments.

2. Economic Model

To provide an economic structure for our empirical analysis, in this section we lay out a version of the long-run

risks model that incorporates fluctuations in good and bad macroeconomic uncertainties. We use our economic model

to highlight the roles of the good and bad uncertainties for future growth and the equilibrium asset prices.

2.1. Preferences

We consider a discrete-time endowment economy. The preferences of the representative agent over the future

consumption stream are characterized by the Kreps and Porteus (1978) recursive utility of Epstein and Zin (1989) and

Weil (1989):

Ut =

[

(1 − β)C
1−γ

θ

t + β(EtU
1−γ

t+1
)

1
θ

]
θ

1−γ

, (1)

where Ct is consumption, β is the subjective discount factor, γ is the risk-aversion coefficient, and ψ is the elasticity

of intertemporal substitution (IES). For ease of notation, the parameter θ is defined as θ ≡
1−γ

1− 1
ψ

. Note that when θ = 1,

that is, γ = 1/ψ, the recursive preferences collapse to the standard case of expected power utility, in which case the

agent is indifferent to the timing of the resolution of uncertainty of the consumption path. When risk aversion exceeds

the reciprocal of IES (γ > 1/ψ), the agent prefers early resolution of uncertainty of consumption path, otherwise, the

agent has a preference for late resolution of uncertainty.

As is shown in Epstein and Zin (1989), the logarithm of the intertemporal marginal rate of substitution implied by

these preferences is given by:

mt+1 = θlog β −
θ

ψ
∆ct+1 + (θ − 1)rc,t+1, (2)

where ∆ct+1 = log(Ct+1/Ct) is the log growth rate of aggregate consumption, and rc,t is a log return on the asset

which delivers aggregate consumption as dividends (the wealth portfolio). This return is different from the observed

return on the market portfolio as the levels of market dividends and consumption are not the same. We solve for the

5See also a related literature on market downside risk, e.g., Ang et al. (2006) and Lettau et al. (2014), which emphasizes the importance of

market left-tail risk.
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endogenous wealth return and the equilibrium stochastic discount factor in (2) using the dynamics for the endowment

process and the standard Euler equation,

Et

[

exp{mt+1}Ri,t+1

]

= 1, (3)

which hold for the return on any asset in the economy, Ri,t+1, including the wealth portfolio.

2.2. Consumption Dynamics

Our specification of the endowment dynamics incorporates the underlying channels of the long-run risks model

of Bansal and Yaron (2004), such as the persistent fluctuations in expected growth and the volatility of consumption

process. The novel ingredients of our model include: (i) the decomposition of the total macroeconomic volatility into

good and bad components associated with good and bad consumption shocks, respectively, and (ii) the direct effect

of macroeconomic volatilities on future economic growth. We show that these new model features are well-motivated

empirically and help us interpret the relation between the good and bad uncertainties, the economic growth, and the

asset prices in the data.

Our benchmark specification for the consumption dynamics is written as follows:

∆ct+1 = µc + xt + σc(εg,t+1 − εb,t+1), (4)

xt+1 = ρxt + τgVgt − τbVbt

+σx(εg,t+1 − εb,t+1), (5)

where xt is the predictable component of next-period consumption growth, and εgt+1 and εbt+1 are two mean-zero

consumption shocks which for parsimony affect both the realized and expected consumption growth.6 The shocks εgt+1

and εbt+1 separately capture positive and negative shocks in consumption dynamics, respectively, and are modelled as,

εi,t+1 = ε̃i,t+1 − Etε̃i,t+1, for i = {g, b}, (6)

where the underlying shocks ε̃i,t+1 have a positive support, namely, ε̃i,t+1 > 0 for i = {g, b}. This ensures that the

consumption shocks εgt+1 and εbt+1 are conditionally mean zero, and are driven by positive and negative shocks to

consumption growth, respectively.

We assume that the volatilities of consumption shocks are time varying and driven by the state variables Vgt and

Vbt; in particular,

Vartεg,t+1 = Vartε̃g,t+1 ≡ Vgt,

Vartεb,t+1 = Vartε̃b,t+1 ≡ Vbt.

6It is straightforward to extend the specification to allow for separate shocks in realized and expected consumption growth rates and break the

perfect correlation of the two. This does not affect our key results, and so we do not entertain this case to ease the exposition.
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This allows us to interpret Vgt and Vbt as good and bad macroeconomic uncertainties, that is, uncertainties regarding

the right and left tail movements in consumption growth. In our specification, the good and bad uncertainties follow

separate AR(1) processes,

Vg,t+1 = (1 − νg)Vg0 + νgVgt + σgwwg,t+1, (7)

Vb,t+1 = (1 − νb)Vb0 + νbVbt + σbwwb,t+1, (8)

where for i = {g, b}, Vi0 is the level, νi the persistence, and wi,t+1 the shock in the uncertainty. For simplicity, the

volatility shocks are Normally distributed, and we let α denote the correlation between the good and bad volatility

shocks.

By construction, the macro volatilities govern the magnitude of the good and bad consumption innovation. In

addition to that, our feedback specification in (5) also allows for a direct effect of good and bad macro uncertainty

on future levels of economic growth. Backus et al. (2010) use a similar feedback specification from a single (total)

volatility to future growth. Our specification features two volatilities (good and bad), and for τg > 0 and τb > 0, an

increase in good volatility raises future consumption growth rates, while an increase in bad volatility dampens future

economic growth. The two-volatility specification captures, in a reduced-form way, an economic intuition that good

uncertainty, through the positive impact of new innovation on growth opportunities, would increase investment and

hence future economic growth, while bad uncertainty, due to the unknown magnitude of adverse news and its impact

on investment, would result in lower growth in the future. While we do not provide the primitive micro-foundation for

this channel, we show direct empirical evidence to support our volatility feedback specification. Further, we show that

the volatility feedback for future cash flows also leads to testable implications for the asset prices which are supported

in the data.

It is important to note that our specification for consumption growth displays non-Gaussian dynamics with time-

varying mean, volatility, and higher-order moments. Specifically, total consumption volatility is equal to the sum of

the good and bad uncertainties, Vgt+Vbt, whereas skewness, kurtosis, and all other higher moments are functions of the

underlying volatility variables Vgt and Vbt. The specific way in which Vgt and Vbt affect those higher moments depends

on the underlying distribution for ε̃i,t+1, i = {b, g}. One specification that is analytically convenient and widely used

features Poisson jumps in the consumption fundamentals, in which case, skewness is directly related to fluctuations in

the intensity of jumps. In this case, the time variation in jump intensity affects separately the left and right tails of the

consumption distribution, and hence the movements in good and bad volatility and higher-order moments. Another

specification is one in which ε̃i,t+1 are drawn from a Gamma distribution with a scale parameter 1 and a time-varying

shape parameter, in which case the consumption shocks dynamics follow the good and bad environment specification

in Bekaert and Engstrom (2009). The time-varying shape parameters governing the Gamma distribution drive the

variance and higher-order moments of consumption growth distribution. An alternative approach for generating time

variation in higher-order moments is given in Colacito et al. (2013). They model shocks to expected consumption as
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drawn from a skew-normal distribution with time-varying parameters and a separate process for stochastic volatility

which leads to separate movements in consumption volatility and skewness. Our modeling approach focuses on bad

and good volatility as the key driving forces for time variation in consumption growth distribution, which is largely

motivated by our empirical analysis.

2.3. Equilibrium Asset Prices

To get closed-form expressions for the equilibrium asset prices, we consider the consumption shock distribution

for which the log moment-generating function is linear in the underlying variances Vg,t and Vb,t. That is,

log Ete
uεi,t+1 = f (u)Vi,t, for i = {g, b}, (9)

and the function f (u) captures the shape of the moment-generating function of the underlying consumption shocks. As

discussed earlier, prominent examples of such distributions include compound Poisson jump distribution and Gamma

distribution. As shown in Appendix Appendix B, for this class of distributions the function f (.) is non-negative,

convex, and asymmetric, that is, f (u) > f (−u) for u > 0.

We use a standard log-linearization approach to obtain analytical solutions to our equilibrium model. Below we

show a summary of our key results, and all the additional details are provided in Appendix Appendix B.

In equilibrium, the solution to the log price-consumption ratio on the wealth portfolio is linear in the expected

growth and the good and bad uncertainty states:

pct = A0 + Axxt + AgvVgt + AbvVbt. (10)

The slope coefficients are given by:

Ax =
1 − 1

ψ

1 − κ1ρ
,

Agv = Ãgv + τg

κ1Ax

1 − κ1νg

, Ãgv =
f (θ((1 − 1

ψ
)σc + κ1Axσx))

θ(1 − κ1νg)
,

Abv = Ãbv − τb

κ1Ax

1 − κ1νb

, Ãbv =
f (−θ((1 − 1

ψ
)σc + κ1Axσx))

θ(1 − κ1νg)
,

(11)

where the parameter κ1 ∈ (0, 1) is the log-linearization coefficient, and the Ãs are the uncertainty loadings on the

price consumption ratio that would be obtained if the consumption dynamics did not include a direct feedback from

uncertainty to growth prospects, namely if τb = τg = 0.

As can be seen from the above equations, the response of the asset valuations to the underlying macroeconomic

states is pinned down by the preference parameters and model parameters which govern the consumption dynamics.

The solution to the expected growth loading Ax is identical to Bansal and Yaron (2004), and implies that when the
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substitution effect dominates the wealth effect (ψ > 1), asset prices rise with positive growth prospects: Ax > 0.

The expressions for the uncertainty loadings are more general than the ones in the literature and take into account

our assumptions on the volatility dynamics. First, our specification separates positive and negative consumption

innovations which have their own good and bad volatility, respectively. The impact of this pure volatility channel

on asset prices is captured by the first components of the volatility loadings in (11), Ãgv and Ãbv. In particular, when

both γ and ψ are above one, these two loadings are negative: Ãgv, Ãbv < 0. That is, with a strong preference for early

resolution of uncertainty, the agent dislikes volatility, good or bad, so the direct effect of an increase in uncertainty

about either positive or negative tail of consumption dynamics is to decrease equilibrium equity prices. In the absence

of cash flow effect, both good and bad uncertainties depress asset valuations, albeit by a different amount. Indeed,

due to a positive skewness of underlying consumption shocks, an increase in good (bad) uncertainty asymmetrically

raises the right (left) tail of the future consumption growth distribution, and this asymmetry leads to a quantitatively

larger negative response of the asset prices to bad uncertainty than to good uncertainty: |Ãbv| > |Ãgv|.

In addition to the direct volatility effect, in our model the good and bad uncertainties can also impact asset prices

through their feedback on future cash flows (see equation 5). For τb > 0, the negative effect of bad uncertainty

on future expected growth further dampens asset valuations, and as shown in (11), the bad volatility coefficient Abv

becomes even more negative. On the other hand, when good uncertainty has a positive and large impact on future

growth, the cash flow effect of the good uncertainty can exceed its direct volatility effect, and as a result the total asset-

price response to good uncertainty becomes positive: Agv > 0. Hence, in our framework, good and bad uncertainties

can have opposite impact on equity prices, with bad uncertainty shocks decreasing and good uncertainty shocks

increasing asset valuations, which we show is an important aspect of the economic data.7

The aforementioned effect of uncertainty on asset valuations is related to several recent studies. In the context

of long-run risks models with preferences for early resolution of uncertainty, Eraker and Shaliastovich (2008) and

Drechsler and Yaron (2011) entertain jumps in cash flows and show that asset valuation drop with increase in jump

intensity, and in particular are sensitive to jumps which affect the left tail of consumption distribution. This effect on

prices is also reflected in Colacito et al. (2013) who show that asset valuations decline when skewness becomes more

negative. Tsai and Wachter (2014) consider a specification that incorporate time-varying rare disasters and booms. As

their Poisson jump shocks are uncompensated, the intensities of booms and disasters have a direct impact on expected

growth and thus capture the differential τ effects highlighted above, which leads to a differential impact of jump

intensity on prices. Finally, in the context of the habits model in Bekaert and Engstrom (2009) prices decline at times

of high expected growth and increase at times of good or bad variance of Gamma-distributed consumption growth

shocks. The difference in the response of prices to uncertainty relative to our specification is due to the preference

structure, and in particular, the preference for early resolution of uncertainty.

7Note that in our simple endowment economy, welfare is increasing in the value of the consumption claim. When Agv is positive, the implication

is that good uncertainty shock increases welfare. This is not surprising since for Agv to be positive there must be a significant positive feedback

from this uncertainty to future growth. The bad uncertainty, as in Bansal and Yaron (2004), unambiguously reduces welfare.
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In the model, the good and bad uncertainty can also have different implications on equilibrium risk-free rates.

Using a standard Euler equation (3), the solutions to equilibrium yields on n−period real bonds are linear in the

underlying state variables:

yt,n =
1

n
(B0,n + Bx,nxt + Bgv,nVgt + Bbv,nVbt), (12)

where Bx,n, Bgv,n and Bbv,n are the bond loadings to expected growth, good, and bad uncertainty factors, whose solu-

tions are provided in the Appendix. As shown in the literature, real bond yields increase at times of high expected

growth, and the bond loading Bx,n is positive. Further, an increase in either good and bad uncertainty raises the pre-

cautionary savings motive for the representative agent, so the direct impact of either uncertainty on risk-free rates is

negative. However, in addition to the direct volatility effect, in our framework good and bad uncertainties also have

an impact on future economic growth. Similar to the discussion of the consumption claim, bad uncertainty reduces

future growth rates which further dampens real rates, so Bbv,n becomes more negative. On the other hand, the positive

cash flow impact of good volatility can offset the precautionary savings motive at longer maturities and can lead to a

positive response of interest rates to good uncertainty. Thus, due to the volatility feedback, in our framework good

and bad uncertainties can have opposite effect on the risk-free rates, which we show is consistent with the data.

2.4. Risk Compensation

Using the model solution to the price-consumption ratio in (10), we can provide the equilibrium solution to the

stochastic discount factor in terms of the fundamental states and the model and preference parameters. The innovation

in the stochastic discount factor, which characterizes the sources and magnitudes of the underlying risk in the economy,

is given by:

mt+1 − Et[mt+1] = −λxσx(εg,t+1 − εb,t+1)

−λgvσgwwg,t+1

−λbvσbwwb,t+1, (13)

and λx, λgv and λbv are the market-prices of risk of growth, good volatility, and bad volatility risks. Their solutions are

given by:

λx = (1 − θ)κ1Ax + γ
σc

σx

(14)

λgv = (1 − θ)κ1Agv, (15)

λbv = (1 − θ)κ1Abv. (16)

When the agent has a preference for early resolution of uncertainty, the market price of consumption growth

risk λx is positive: λx > 0. Consistent with our discussion of the price-consumption coefficients, the market prices
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of the volatility risks depend on the strength of the volatility feedback for future cash flow. When the good and

bad uncertainties have no impact on future growth (τg = τb = 0), the market prices of both volatility risks are

negative. Indeed, with preference for early resolution of uncertainty, the agent dislikes volatility, good or bad, and

thus high uncertainties represent high risk states for the investor. The market prices of uncertainty risks change when

we introduce volatility feedback for future growth. When bad volatility predicts lower future growth, it makes bad

volatility fluctuations even riskier, which increase, in absolute value, the market price of bad uncertainty risk, so

λbv < 0. On the other hand, when good uncertainty impacts positively future economic growth, the market price of

good uncertainty can become positive: λgv > 0. Thus, in our framework, bad and good uncertainty can have opposite

market prices of risk.

To derive the implications for the risk premium, we consider an equity claim whose dividends represent a levered

claim on total consumption, similar to Abel (1990) and Bansal and Yaron (2004). Specifically, we model the dividend

growth dynamics as follows,

∆dt+1 = µd + φxxt + σdud,t+1, (17)

where φx > 0 is the dividend leverage parameter which captures the exposure of equity cash flows to expected con-

sumption risks, and ud,t+1 is a Normal dividend-specific shock which for simplicity is homoscedastic and independent

from other economic innovations.8 Using the dividend dynamics, we solve for the equilibrium return on the equity

claim, rd,t+1, in an analogous way to the consumption asset. The return dynamics satisfies,

rd,t+1 = Et[rd,t+1] + βxσx(εg,t+1 − εb,t+1)

+βgvσgwwg,t+1 + βbvσbw

+σdud,t+1, (18)

where βx, βgv, and βbv are the equity betas which reflect the response of the asset valuations to the underlying expected

growth, good, and bad volatility risks, respectively. Similar to the consumption asset case, the equity betas to growth

risks and good volatility risks are positive, while the equity beta to bad uncertainty risks is negative: βx > 0, βgv >

0, βbv < 0. Further, since the volatilities of εb,t+1 and εg,t+1 are driven by Vb,t and Vg,t, it immediately follows from

equation (18) that the conditional variance of returns is time varying and increasing in good and bad uncertainties (see

Appendix for details).

In equilibrium, the risk compensation on equities depends on the exposure of the asset to the underlying sources

8It is straightforward to generalize the dividend dynamics to incorporate stochastic volatility of dividend shocks, correlation with consumption

shocks, and the feedback effect of volatility to expected dividends (see e.g., Bansal et al. (2011), and Schorfheide et al. (2013)). As our focus is on

aggregate macroeconomic uncertainty, these extensions do not affect our key results, and for simplicity are not entertained. However, it is worth

noting that, by convexity, separate idiosyncratic dividend volatility can be positively related to equity prices (see e.g., Pastor and Veronesi (2006),

Ai and Kiku (2012), and Johnson and Lee (2013)).
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of risk, the market prices of risks, and the quantity of risk. Specifically, the equity risk premium is given by,

EtRd,t+1 − R f ,t ≈ log Ere
rd,t+1−r f ,t

=
[

f (−λxσx) − f ((βx − λx)σx) + f (βxσx)
]

Vgt

+
[

f (λxσx) − f ((λx − βx)σx) + f (−βxσx)
]

Vbt

+ βgvλgvσ
2
gw + βgvλbvσ

2
bw

+ ασbwσgw(βgvλbv + βbvλgv).

(19)

In our model, all three sources of risks contribute to the risk premia, and the direct contribution of each risk to the

equity risk premium is positive. The first two components of the equity premium above capture the contribution of

the non-Gaussian growth risk, which is time varying and driven by the good and bad volatilities. When γ > 1 and

ψ > 1, the market price of growth risk λx and the equity exposure to growth risk βx are both positive. As we show in

the Appendix, this implies that the equity premium loadings on both good and bad volatilities are positive, so that the

growth risks receive positive risk compensation unconditionally, and this risk compensation increases at times of high

good or bad volatility. The remaining constant components in the equity risk premia equation capture the contributions

of the Gaussian volatility shocks. As the market prices of volatility risks and equity exposure to volatility risks have

the same sign, the volatility risks receive positive risk compensation in equities. The last term in the decomposition

above captures the covariance between good and bad uncertainty risk, and is negative when the two uncertainties have

positive correlation (α > 0).

To get further intuition for the nature of the risk compensation, we consider a Taylor expansion of the equity risk

premium:

EtRd,t+1 − R f ,t ≈ const + βxλxσ
2
x(Vgt + Vbt)

− λxβxσ
3
x(λx − βx)(Vgt − Vbt) + . . .

(20)

The constant in this equation captures constant contribution of volatility risks to the risk premia. Subsequent terms

pick out the second and third-order components in the decomposition of the non-Gaussian growth risk premia; for

simplicity, we omit higher-order terms. The second-order component is standard, and is equal to the negative of

the covariance of log returns and log stochastic discount factor. This component is driven by the quantity of total

consumption variance, Vgt+Vbt.An increase in either good or bad volatility directly raises total consumption variance,

and hence increases equity risk premia (βx and λx are both positive). The third-order component is driven by the

quantity of consumption skewness, Vgt − Vbt. Under typical parameter calibration of the model, λx > βx.
9 This

9In the model, λx = (1 − θ)κ1Ax + γσc/σx, and βx = κ1,dHx. The term (1 − θ) is positive under early resolution of uncertainty, and amounts to

28 under a typical calibration of γ = 10, ψ = 1.5. The equity price response to growth news Hx is magnified relative to consumption asset price

response Ax by the leverage of the dividend stream φx, so that Hx/Ax is around 3-5. The log-linearization parameters κ1 ≈ κ1,d ≈ 1. In all, this

provides, λx > βx.
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implies that when Vbt increases relative to Vgt and the skewness of consumption shocks decreases (becomes more

negative), the equity premium goes up. Hence, the total risk premium increases at times of high good or bad volatility,

but the bad volatility has a larger effect capturing the importance of the left tails.

The quantities of total consumption variance and skewness risk are time varying themselves, and directly con-

tribute to the equity risk premium. In our model, the total variance and skewness are linearly related to the good

and bad volatilities, so that the risk compensation for the variance and skewness risk are components of the constant

risk compensation for good and bad volatility risks in (19)-(20). We show the implied market prices and equity be-

tas to variance and skewness risk in the Appendix. In particular, in our framework agents dislike states with low

consumption growth skewness (larger left tails), thus leading asset prices to fall in those states.

3. Data and Uncertainty Measures

3.1. Data

In our benchmark analysis we use annual data from 1930 to 2012. Consumption and output data come from the

Bureau of Economic Analysis (BEA) NIPA tables. Consumption corresponds to the real per capita expenditures on

non-durable goods and services and output is real per capita gross domestic product minus government consumption.

Capital investment data are from the NIPA tables; R&D investment is available at the National Science Foundation

(NSF) for the 1953 to 2008 period, and the R&D stock data are taken from the BEA Research and Development

Satellite Account for the 1959 to 2007 period. To measure the fluctuations in macroeconomic volatility, we use

monthly data on industrial production from the Federal Reserve Bank of St. Louis.

Our aggregate asset-price data include 3-month Treasury bill rate, the stock price and dividend on the broad market

portfolio from CRSP, and aggregate earnings data from Shiller’s website. We adjust nominal short-term rate by the

expected inflation to obtain a proxy for the real risk-free rate. Additionally, we collect data on equity portfolios

sorted on key characteristics, such as book-to-market ratio and size, from the Fama-French Data Library. Our bond

portfolios, as in Ferson et al. (2013), include the excess returns of low- over high-grade corporate bonds (Credit

Premium portfolio), and the excess returns of long- over short-term Treasury bonds (Term premium portfolio).10.

To measure the default spread, we use the difference between the BAA and AAA corporate yields from the Federal

Reserve Bank of St. Louis.

The summary statistics for the key macroeconomic variables are shown in Panel A of Table 1. Over the 1930 to

2012 sample period the average consumption growth is 1.8% and its volatility is 2.2%. The average growth rates in

output, capital investment, market dividends, and earnings are similar to that in consumption, and it is larger for the

R&D investment (3.5%) over the 1954 to 2008 period. As shown in the Table, many of the macroeconomic variables

are quite volatile relative to consumption: the standard deviation of earnings growth is 26%, of capital investment

10We thank Wayne Ferson for providing us data on these bond portfolios which we extend till 2012 using long-term government data and

corporate bond data from Barclays.
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growth is almost 15%, and of the market dividend growth is 11%. Most of the macroeconomic series are quite

persistent with an AR(1) coefficient of about 0.5.

Panel B of Table 1 shows the summary statistics for the key asset-price variables. The average real log market

return of 5.8% exceeds the average real rate of 0.3%, which implies an equity premium (in logs) of 5.5% over the

sample. The market return is also quite volatile relative to the risk-free rate, with a standard deviation of almost 20%

compared to 2.5% for the risk-free rate. The corporate yield on BAA firms is on average 1.2% above that for the AAA

firms, and the default spread fluctuates significantly over time. The default spread, real risk-free rate, and the market

price-dividend ratio are very persistent in the sample, and their AR(1) coefficients range from 0.72 to 0.88.

3.2. Measurement of Good and Bad Uncertainties

To measure good and bad uncertainty in the data, we follow the approach in Barndorff-Nielsen et al. (2010) to

decompose the usual realized variance into two components that separately capture positive and negative (hence,

”good” and ”bad”) movements in the underlying variable, respectively. While we focus on the variation in the ag-

gregate macroeconomic variables, Feunou et al. (2013), and Patton and Sheppard (2011) entertain similar type of

semivariance measures in the context of stock market variation.11

Specifically, consider an aggregate macroeconomic variable y (e.g., industrial production, earnings, consumption),

and let ∆y stand for the demeaned growth rate in y. Then, we define the positive and negative realized semivariances,

RVp and RVn, as follows:

RVp,t+1 =

N
∑

i=1

I(∆yt+ i
N
≥ 0)∆y2

t+ i
N

, (21)

RVn,t+1 =

N
∑

i=1

I(∆yt+ i
N
< 0)∆y2

t+ i
N

, (22)

where I(.) is the indicator function and N represents the number of observations of y available during one period (a

year in our case). It is worth noting that RVp and RVn add up to the standard realized variance measure, RV , that is,

RVt+1 =

N
∑

i=1

∆y2

t+ i
N

= RVn,t+1 + RVp,t+1.

Barndorff-Nielsen et al. (2010) show that in the limit the positive (negative) semivariance captures one-half of the

variation of any Gaussian symmetric shifts in ∆y, plus the variation of non-Gaussian positive (negative) fluctuations;

see Appendix Appendix A for further details. Notably, the result in this paper implies that asymptotically, the

semivariances are unaffected by movements in the conditional mean; however, given the finite-sample considerations,

we confirm the robustness of our results removing the fluctuations in conditional mean.

11The use of semivariance in finance goes back to at least Markowitz (1959), and more recent applications include, for example, Hogan and

Warren (1974) and Lewis (1990).
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The positive and negative semivariances are informative about the realized variation associated with movements in

the right and left tail, respectively, of the underlying variable. Positive (negative) semivariance therefore corresponds

to good (bad) realized variance states of the underlying variable and thus we use the predictable component of this

measure as the empirical proxy for ex-ante good (bad) uncertainty. To construct the predictive components, we project

the logarithm of the future average h−period realized semivariance on the set of time t predictors Xt :

log

















1

h

h
∑

i=1

RV j,t+i

















= const j + ν
′
jXt + error, j = {p, n}, (23)

and take as the proxies for the ex-ante good and bad uncertainty Vg and Vb the exponentiated fitted values of the

projection above:

Vg,t = exp
(

constp + ν
′
pXt

)

, Vb,t = exp
(

constn + ν
′
nXt

)

. (24)

The log transformation ensures that our ex-ante uncertainty measures remain strictly positive.

In addition to measuring the ex-ante uncertainties, we use a similar approach to construct a proxy for the expected

consumption growth rate, xt which corresponds to the fitted value of the projection of future consumption growth on

the same predictor vector Xt :

1

h

h
∑

i=1

∆c j,t+i = constc + ν
′
cXt + error,

xt = constc + ν
′
cXt.

In our empirical applications we let y be industrial production, which is available at monthly frequency, and use

that to construct realized variance at the annual frequency. As there are twelve observations of industrial production

within a year, our measurement approach is consistent with the model setup which allows for multiple good and bad

shocks within a period (a year). To reduce measurement noise in constructing the uncertainties, in our benchmark

empirical implementation we set the forecast window h to three years. Finally, the set of the benchmark predictors

Xt includes positive and negative realized semivariances RVp,RVn, consumption growth ∆c, the real-market return rd,

the market price-dividend ratio pd, the real risk-free rate r f , and the default spread de f .12

Panel C of Table 1 reports the key summary statistics for our realized variance measures. The positive and negative

semivariances contribute about equally to the level of the total variation in the economic series, and the positive

semivariance is more volatile than the negative one. The realized variation measures co-move strongly together: the

contemporaneous correlation between total and negative realized variances is 80%, and the correlation between the

positive and negative realized variance measures is economically significant, and amounts to 40%.

12As shown in Section 5, our results are robust to using standard OLS regression instead of the log, the use of alternative predictors, different

forecast windows h, removing the conditional mean in constructing the semivariance measures, and using other measures for y.
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Figure 1 shows the plot of the total realized variance, smoothed over the 3-year window to reduce measurement

noise. As can be seen from the graph, the overall macroeconomic volatility gradually declines over time, consistent

with the evidence in McConnell and Perez-Quiros (2000) and Stock and Watson (2002), as well as Bansal et al.

(2005b), Lettau et al. (2008), and Bansal et al. (2013). Further, the realized variance is strongly counter-cyclical:

indeed, its average value in recessions is twice as large as in expansions. The most prominent increases in the realized

variance occur in the recessions of the early and late 1930s, the recession in 1945, and more recently in the Great

Recession in the late 2000. Not surprisingly, the counter-cyclicality of the total variance is driven mostly by the

negative component of the realized variance. To highlight the difference between the positive and negative variances,

we show in Figure 2 the residual positive variance (smoothed over the 3-year window) which is orthogonal to the

negative variance. This residual is computed from the projection of the positive realized variance onto the negative

one. As shown on the graph, the residual positive variance sharply declines in recessions, and the largest post-war

drop in the residual positive variance occurs in the recession of 2008-2009.

We project the logarithms of the future 3-year realized variances and the future 3-year consumption growth rates

on the benchmark predictor variables to construct the ex-ante uncertainty and expected growth measures. It is hard

to interpret individual slope coefficients due to the correlation among the predictive variables, so for brevity we do

not report them in the paper; typically, the market variables, such as the market price-dividend ratio, the market

return, the risk-free rate, and the default spread, are significant in the regression, in addition to the lags of the realized

variance measures themselves. The R2 in these predictive regressions ranges from 30% for the negative variance and

consumption growth to 60% for the positive variance.

We show the fitted values from these projections alongside the realized variance measures on Figure 3. The logs

of the realized variances are much smoother than the realized variances themselves (see Figure 1), and the fitted

values track well both the persistent declines and the business-cycle movements in the underlying uncertainty. We

exponentiate the fitted values to obtain the proxies for the good and bad ex-ante uncertainties. Figures 4 and 5 show

the total uncertainty and the residual ex-ante good uncertainty which is obtained from the projection of the good

uncertainty on the bad uncertainty. Consistent with our discussion for the realized quantities, the total uncertainty

gradually decreases over time, and the residual good uncertainty generally goes down in bad times. Indeed, in the

recent period, the residual good uncertainty increases in the 1990s, and then sharply declines in the 2008. Notably,

the ex-ante uncertainties are much more persistent than the realized ones: the AR(1) coefficients for good and bad

uncertainties are about 0.5, relative to 0.2-0.3 for the realized variances.

4. Empirical Results

In this section we empirically analyze the implications of good and bad uncertainty along several key dimensions.

In Section 4.1 we analyze the effects of uncertainty on aggregate macro quantities such as output, consumption, and

investment. In Section 4.2 we consider the impact of uncertainties on aggregate asset prices such as the market price-
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dividend ratio, the risk free rate, and the default spread. In Section 4.3 we examine the role of uncertainty for the

market and cross-section of risk premia. Our benchmark analysis is based on the full sample from 1930-2012 and in

the robustness section we show that the key results are maintained for the postwar period.

4.1. Macroeconomic Uncertainties and Growth

Using our empirical proxies for good and bad uncertainty, Vgt and Vbt, we show empirical support that good

uncertainty is associated with an increase in future output growth, consumption growth, and investment, while bad

uncertainty is associated with lower growth rates for these macro quantities. This is consistent with our cash flow

dynamics in the economic model specification shown in equation (5).

To document our predictability evidence, we regress future growth rate for horizon h years on the current proxies

for good and bad uncertainty and the expected growth – that is we run a predictive regression

1

h

h
∑

j=1

∆yt+ j = ah + b′h[xt,Vgt,Vbt] + error,

for the key macroeconomic variables of interest y and forecast horizons h from 1 to 5 years. Table 2 reports the

slope coefficients and the R2 for the regressions of consumption growth, private GDP, corporate earnings, and market

dividend growth, and Table 3 shows the evidence for capital investment and R&D measures.

It is evident from these two tables that across the various macroeconomic growth rates and across all the horizons,

the slope coefficient on good uncertainty is always positive. This is consistent with the underlying premise of the

feedback channel of good uncertainty on macro growth rates. Further, except for the three-year horizon for earnings,

all slope coefficients for bad uncertainty are negative, which implies, consistently with the theory, that a rise in

bad uncertainty would lead to a reduction in macro growth rates. Finally, in line with our economic model, the

expected growth channel always has a positive effect on the macro growth rates as demonstrated by the positive slope

coefficients across all the predicted variables and horizons.

The slope coefficients for all three predictive variables are economically large and in many cases are also statisti-

cally significant. All our tables include the usual Newey-West t-statistics for all the estimated coefficients. Addition-

ally, to facilitate the comparison of the empirical results with our economic model, we also indicate the significance

of the coefficients against the economically-motivated alternative one-sided hypotheses. For the growth predictability

regressions, our hypotheses are that growth and good uncertainty have a positive impact, while bad uncertainty has a

negative impact, respectively. As shown in the Table, the expected growth (cash flow) channel is almost always sig-

nificant, while the significance of good and bad uncertainty varies across predicted variables and maturities, although

they tend to be significant in one-sided tests. Because, the uncertainty measures are quite correlated, the evaluation of

individual significance may be difficult to assess. Therefore, in the last column of these tables we report the p-value of

a Wald test for the joint significance of good and bad uncertainty. For the most part the tests reject the joint hypothesis

that the loadings on good and bad uncertainty are zero. In particular, at the five-year horizon all of the p-values are
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below five percent, and they are below 1% for all the investment series at all the horizons.

It is worth noting that the adjusted R2s for predicting most of the future aggregate growth series are quite substan-

tial. For example, the consumption growth R2 is 50% at the one-year horizon, and the R2 for the market dividends

reaches 40%, while it is about 10% for earnings and private GDP. For the investment and R&D series the R2s at the

one-year horizon are also substantial and range from 28% to 55%. The R2s generally decline with the forecast horizon

but for many variables, such as consumption and investment, they remain quite large even at five years.

To further illustrate the economic impact of uncertainty, Figures 6- 8 provide impulse responses of the key eco-

nomic variables to good and bad uncertainty shocks. The impulse response functions are computed from a VAR(1)

that includes bad uncertainty, good uncertainty, predictable consumption growth, and the macroeconomic variable of

interest. Each figure provides three panels containing the responses to one standard deviation shock in good, bad, and

total uncertainty, respectively.

Figure 6 provides the impulse response of private GDP growth to uncertainty. Panel A of the figure demonstrates

that output growth increases by about 2.5% after one year due to a good uncertainty shock, and this positive effect

persists over the next three years. Panel B shows that bad uncertainty decreases output growth by about 1.3% after

one year, and remains negative even 10 years out. Panel C shows that output response to overall uncertainty mimics

that of bad uncertainty but the magnitude of the response is significantly smaller – output growth is reduced by about

0.25% one year after the shock, and becomes positive after the second year. Recall that good and bad uncertainty

have opposite effects on output yet they tend to comove, and therefore the response to total uncertainty becomes less

pronounced.

Figure 7 provides the impulse response of capital investment to bad, good, and total uncertainty, while Figure 8

shows the response of R&D investment to these respective shocks. The evidence is even sharper than that for GDP.

Both investment measures significantly increase with good uncertainty and remain positive till about five years out.

These investment measures significantly decrease with a shock to bad uncertainty and total uncertainty several years

out. Total uncertainty is a muted version of the impulse response to bad uncertainty and is consistent with the finding

in Bloom (2009) who shows a significant short-run reduction of total output in response to uncertainty shock, followed

by a recovery and overshoot. Comparing Panels B and C of the figures highlights a potential bias in the magnitude of

the decline in investment (and other macro quantities) in response to uncertainty when total uncertainty is used rather

than bad uncertainty. For example for capital investment the maximal decline is about 2.3% for total uncertainty and

3% for bad uncertainty, and for the R&D investment the maximal response is 0.6% for total uncertainty while it is 1.1%

for bad uncertainty, which indicates that the response differences are economically significant. Thus, decomposing

uncertainty to good and bad components allows for a cleaner and sharper identification of the impact of uncertainty

on growth.

Finally, we have also considered the impact of good and bad uncertainty on aggregate employment measures.

Consistent with our findings for economic growth rates, we find that high good uncertainty predicts an increase in

future aggregate employment and hours worked and a reduction in future unemployment rates, while an high bad
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uncertainty is associated with a decline in future employment and an increase in unemployment rates. In the interest

of space, we do not report these results in the tables.

4.2. Macroeconomic Uncertainties and Aggregate Prices

We next use our good and bad uncertainty measures to provide empirical evidence that good uncertainty is associ-

ated with an increase in stock market valuations and decrease in the risk-free rates and the default spreads, while bad

uncertainty has an opposite effect on these asset prices. This is consistent with the equilibrium asset-price implications

in the model specification in Section 2.

To document the link between asset prices and uncertainties, we consider contemporaneous projections of the

market variables on the expected growth and good and bad uncertainties, which we run both in levels and in first

differences, that is13:

yt = a + b′[xt,Vgt,Vbt] + error,

∆yt = a + b′[∆xt,∆Vgt,∆Vbt] + error.

where now y refers to the dividend yield, risk free rate, or default spread.

Table 4 shows the slope coefficients and the R2s in these regressions for the market price-dividend ratio, the real

risk-free rate, and the default spread. As is evident from the Table, the slope coefficients on bad uncertainty are

negative for the market price-dividend ratio and the real risk-free rate, and they are positive for the default spread. The

slope coefficients are of the opposite sign for the good uncertainty, and indicate that market valuations and interest

rates go up and the default spread falls at times of high good uncertainty. Finally, the price-dividend ratio and the risk-

free rates increase, while the default spread falls at times of high expected growth. Importantly, all these empirical

findings are consistent with the implication of our model, outlined in Section 2, that high expected growth, high good

volatility, and low bad volatility are good economic states.

The slope coefficients for our three state variables are economically large. In most cases, the volatility slope

coefficients are statistically significant using economically-motivated one-sided tests. These tests specify that good

(bad) volatility has a positive (negative) impact on price-dividend ratio and risk-free rate, and opposite for the default

spreads. Jointly, the two uncertainty variables are always significant with a p−value of 1% or below. The statistical

significance is especially pronounced for the first-difference projections. Recall that the asset-price variables that we

use are very persistent and may contain slow-moving near-unit root components which can impact statistical inference.

First-difference (or alternatively, using the innovations into the variables) substantially reduces the autocorrelation of

the series and allows us to more accurately measure the response of the asset prices to the underlying shocks in

macroeconomic variables.

13Instead of the first difference, we have also run the regression on the innovations into the variables, and the results are very similar.
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It is also worth noting that our three macroeconomic factors can explain a significant portion of the variation in

asset prices. The R2 in the regressions is 20% for the level of the price-dividend ratio and 60% for the first difference.

For the real rate, the R2s are about 30%, and it is 50% for the level of the default spread and 30% for the first difference.

Figures 9 and 10 further illustrate the impact of uncertainties on asset prices and show the impulse responses of

the price-dividend and price-earnings ratio to a one-standard deviation uncertainty shock from the VAR(1). Panel

A of the Figure 9 documents that the price-dividend ratio increases by 0.07 one year after a good uncertainty shock

and remains positive 10 years out. Similarly, the price-earnings ratio increases to about 0.04 in the first two years

and its response is also positive at 10 years, as depicted in Panel A of Figure 10. Bad uncertainty shocks depress

both immediate and future asset valuations. Price-dividend ratio drops by 0.06 on the impact, while price-earnings

ratio declines by about 0.04 one year after, and all the impulse responses are negative 10 years after the shock. The

response of the asset prices to the total uncertainty shock is significantly less pronounced than the response to bad

uncertainty: the price-dividend ratio decreases immediately by only 0.04 on the impact of the total uncertainty shock,

and the response reaches a positive level of 0.01 at 1 year and goes to zero after 3 years. Similarly, price-earnings ratio

decreases by 0.01 one year after the impact, and the response becomes positive after 3 years. This weaker response

of prices to total uncertainty is consistent with the analysis in Section 2, where it is shown that asset prices react less

to good uncertainty than they do to bad uncertainty even when there was no feedback effect from good uncertainty

to expected growth and asset prices reaction to both uncertainties were negative. In the model and in the data, total

uncertainty is a combination of the correlated bad and good uncertainty components, which have opposite effect on

the asset prices, and it therefore immediately follows that the response of asset prices to the total uncertainty shock

is less pronounced. This muted response of asset prices to the total uncertainty masks the significant but opposite

effects that different uncertainty components can have on asset valuations, and motivates our decomposition of the

total uncertainty into the good and bad part.

As a final assessment of the model implications for the market return, we evaluate the impact of our macroeco-

nomic uncertainty measures on future level and realized variation in excess returns. In our framework Vgt and Vbt are

the key state variables which drive fluctuations in risk premia and volatility of returns, and in particular, the model-

implied loadings of the risk premia and volatility on both Vgt and Vbt are positive. Panel A in Table 5 provide the

regression results for predicting excess returns for 1, 3, and 5 years. At one and three year horizon, the loading coeffi-

cients are positive on both measures of ex-ante uncertainty and jointly statistically significant. At the five year horizon

the loading on Vbt is positive while that on Vgt is negative although both coefficients are statistically insignificant. The

R2 for the 3 and 5 year horizons are non-negligible at about 10%. Similarly, Panel B of Table 5 shows that return

volatility loadings on good and bad uncertainty are positive and jointly statistically significant at all horizons with

economically significant R2s of 15-20%. These findings are in line with the model implications. It is also interesting

to note that the coefficient on Vgt is smaller than that of Vbt, consistent with the notion that the effect of bad uncertainty

is more important for asset pricing than that of good uncertainty. This is also consistent with the findings in Colacito

et al. (2013) for the importance of time variation in skewness and left tail.
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4.3. Macroeconomic Uncertainties & Cross-Section of Returns

Using our empirical measures in the data, we show the implications of macroeconomic growth and good and

bad uncertainties for the market and a cross-section of asset returns. Our empirical analysis yields the following key

results. First, the risk exposures (betas) to bad uncertainty are negative, and the risk exposures to good uncertainty

and expected growth are positive for the market and across the considered asset portfolio returns. This is consistent

with our empirical evidence on the impact of growth and uncertainty fluctuations for the market valuations in Section

4.2, and with the equilibrium implications of the model in Section 2. Second, in line with the theoretical model, we

document that bad uncertainty has a negative market price of risk, while the market prices of good uncertainty and

expected growth risks are positive in the data. Hence, the high-risk states for the investors are those associated with

low expected growth, low good uncertainty, and high bad uncertainty. We show that the risk premia for all the three

macroeconomic risk factors are positive, and the uncertainty risk premia help explain the cross-section of expected

returns beyond the cash flow channel.

Specifically, following our theoretical model, the portfolio risk premium is given by the product of the market

prices of fundamental risks Λ = (λx, λgv, λbv), the variance-covariance matrix Ω which captures the quantity of risk,

and the exposure of the assets to the underlying macroeconomic risk βi
14:

E[Ri,t+1 − R f ,t] = Λ
′Ωβi. (25)

Given the innovations to the portfolio returns and to our aggregate risk factors, we can estimate the equity exposures

and the market prices of expected growth and bad and good uncertainty risks using a standard Fama and MacBeth

(1973) procedure.15 We first obtain the return betas by running a multivariate regression of each portfolio return

innovation on the innovations to the three factors:

ri,t+1 − Etri,t+1 = const + βi,x(xt+1 − Et[xt+1])

+βi,gv(Vg,t+1 − Et[Vg,t+1])

+βi,bv(Vb,t+1 − Et[Vb,t+1])

+ error. (26)

The slope coefficients in the above projection, βi,x, βi,gv, and βi,bv, represent the portfolio exposures to expected growth,

good uncertainty, and bad uncertainty risk, respectively. Next we obtain the factor risk premia Λ̃ by running a cross-

14In our model growth shocks are non-Gaussian and therefore the risk premia may include higher-order terms associated with expected growth

risk. The volatility risk premia are still linear in the volatility risk exposures. As the focus of our paper is on volatility risk, we maintain a standard

linear framework for cross-section evaluation.
15We have also considered an alternative econometric approach to measure return innovations similar to Bansal et al. (2005a), Hansen et al.

(2008), and Bansal et al. (2013). The results are similar to our benchmark specification.
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sectional regression of average returns on the estimated betas:

Ri − R f = λ̃xβi,x + λ̃gvβi,gv + λ̃bvβi,bv + error. (27)

We impose a zero-beta restriction in the estimation and thus run the regression without an intercept. The implied

factor risk premia, Λ̃ = (λ̃x, λ̃gv, λ̃bv), encompass both the vector of the underlying prices of risks Λ and the quantity

of risks Ω :

Λ̃ = ΩΛ.

To calculate the underlying prices of expected growth, good and bad uncertainty risk Λ, we pre-multiply the factor

risk premia Λ̃ by the inverse of the quantity of risk Ω, which corresponds to the estimate of the unconditional variance

of the factor innovation in the data. To compute standard errors, we embed the two-state procedure into GMM, which

allows us to capture statistical uncertainty in estimating jointly asset exposures and market prices of risk.

In our benchmark implementation, we use the market return, the cross-section of 25 equity portfolios sorted on

book-to-market ratio and size, as well as two bond portfolios (Credit Premium and Term Premium portfolios).16 Table

6 shows our key evidence concerning the estimated exposures of these portfolios to expected growth and uncertainty

risks and the market prices of risks. Panel A of the Table documents that our macroeconomic risk factors are priced

in the cross-section, and the market prices of expected growth and good uncertainty risk are positive, and that of bad

uncertainty risk is negative. This indicates that the adverse economic states for the investor are those with low growth,

high bad uncertainty, and low good uncertainty, consistent with the theoretical model. Using one-sided tests against

these economically-motivated alternatives, the market price of the expected growth risk is significant at a 1% level,

while the market prices of volatility risks are significant at a 5% level.

Panel B of the Table shows that the equity and bond returns are exposed to these three sources of risks. In

particular, all assets have a positive exposure to expected growth risk. The estimated exposures to bad uncertainty

risks are negative, while the betas to good uncertainty risks are positive for all the considered asset portfolios. Thus,

consistent with our economic model, our evidence indicates that asset returns increase at times of high expected

growth and high good uncertainty and decrease at times of high bad uncertainty, and the magnitudes of the response

vary in the cross-section. Nearly all of the estimated exposures are significant at a 1% level.

We combine the estimated market prices of risk, quantity of risk, and the equity and bond betas to evaluate the

cross-sectional risk premia implications of our model, and report these empirical results in Table 7. As shown in the

Table, our estimated model can match quite well the level and the dispersion of the risk premia in the cross-section of

assets. The market risk premium is 7.2% in the data relative to 8.2% in the model. To help compare the implications

of the model to the data, we aggregate the reported average returns into value and size spreads. We define the value

spread as the difference between the weighted average returns on the highest and lowest book-to-market portfolios

16In a related literature, Chen (2010), Bhamra et al. (2010), and McQuade (2014) develop economic models to study defaults and corporate bond

spreads, and Bansal and Shaliastovich (2013) and Piazzesi and Schneider (2006) consider model implications for nominal bond yields.
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across the five sizes. Similarly, the size spread is defined as the difference between the weighted average returns

on the biggest and smallest size portfolios across the book-to-market sorts. In the data, the value spread is 4.38%,

which is comparable to 3.34% in the model. The size spread is 4.39%, relative to 5.21% in the model. For the Credit

premium portfolio the risk premium is 1.98% in the data and 2.15% in the model. The Term premium is 1.82% in

the data relative to 0.64% in the model.17 We further use the risk premium condition (25) to decompose the model

risk premia into the various risk contributions. Because our risk factors are correlated, in addition to the own risk

compensations for individual shocks (i.e., terms involving the variances on the diagonal of Ω) we also include the risk

components due to the interaction of different shocks (i.e., the covariance elements off the diagonal). As shown in

the Table, the direct risk compensations for the expected growth and good and bad uncertainty shocks are positive for

all the portfolios. This is an immediate consequence of our empirical finding that the equity and bond betas and the

market prices of risks are of the same sign, so the direct contribution of each source of risk to the total risk premium

is positive. On the other hand, the risk premia interaction terms can be negative and quite large, e.g. the risk premia

due to the covariance of good and bad uncertainty. While it is hard to assess separate risk contributions of each risk

factor due to the non-negligible covariance interactions, our results suggest that both good and bad uncertainties have

considerable impact on the level and the cross-section of returns.

Overall, our findings for the expected growth risk channel are in line with Bansal et al. (2005a), Hansen et al.

(2008) and Bansal et al. (2013) who show the importance of growth risk for the cross-section of expected returns. Our

evidence for the bad uncertainty is further consistent with Bansal et al. (2013), who document that total macroeco-

nomic volatility has a negative market price of risk and depresses asset valuations in the cross-section. On the other

hand, our finding for the separate role of the good uncertainty for the stock returns, above and beyond the expected

growth and total uncertainty channel, is a novel contribution of this paper.

5. Robustness

Our benchmark empirical results are based on the predictive uncertainty measures which are constructed from

industrial production data, and which span the full sample period from 1930 to 2012. In this section, we show that

our main conclusions are not mechanical and are robust to alternative proxies for the realized variation measures, the

construction of the ex-ante uncertainties, and using the post-war period.

5.1. Simulation Analysis

We use a calibrated model to conduct a Monte-Carlo simulation analysis of the realized semivariances and verify

that our empirical results are not driven by the mechanics of the constructed estimators. Specifically, we consider a

long-run risks model of Bansal and Yaron (2004) which features conditionally Gaussian consumption shocks, a single

stochastic volatility process, and no volatility feedback into the expected growth. Hence, under the null of the model,

17The model excludes an inflation factor which is well known to be important for explaining the term premia.
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there are no separate movements in good and bad volatilities and no effect of volatility on future growth. This allows

us to assess whether the mechanics of the construction of the semivariances or the finite-sample considerations can

spuriously generate our empirical findings. The model setup and calibration are described in Appendix Appendix

C and follow Bansal et al. (2011). We simulate the model on monthly frequency, and use the same approach as

in Section 3.2 to construct realized positive and negative variances based on the simulated consumption data. The

ex-ante expectations of the quantities are determined from the projections on the model predictive variables, which

include positive and negative semivariances, consumption growth, market return, the market-price dividend ratio, and

the risk-free rate.

Tables 8-9 show the model evidence for the projections of consumption and dividend growth rates, for horizons

of 1 to 5 years, on the extracted expected growth, and the good and bad uncertainties. We report model evidence for

finite samples of 83 years each, and population values based on a long simulation of 1,000,000 years. The top panels

in the Tables report the findings under the benchmark specification. Consistent with our empirical robustness analysis

(see below), we also consider two modifications of the benchmark specification, where the predictive uncertainties are

based on straight OLS rather than log of the variances, and where we use the AR(1) fit to the monthly consumption

growth to remove the fluctuations in the conditional mean.

Table 8 reports the slopes and the R2s for the consumption and dividend projections. As shown in the Table, the

slope coefficients on bad (good) volatility are generally positive (negative), at least for one and three year horizons,

and these coefficients decrease (increase) with the horizon of the regressions. The evidence is especially pronounced

in the population; indeed, in benchmark simulation specification all the bad (good) volatility slopes from 1 to 5 years

to maturity are positive (negative). This is opposite of what we find in the data, where the coefficients on bad (good)

volatility are generally most negative (positive) at short horizons, and tend to increase (decrease) with the horizon.

The Table also shows a considerable amount of noise in estimating the ex-ante uncertainties in small samples, as all

the small-sample volatility loadings are insignificant.

In Table 9 we assess the joint probability for finding the same volatility signs as in the data combining the evidence

across the horizons and across the consumption and dividend regressions. The Table documents that across 1 to 5 year

horizon consumption growth regressions, all bad volatility loadings turn out negative and all good volatility turn out

positive in 3% of the cases. For dividend regressions, this number is 9%. Finally, combining the evidence from both

the consumption and dividend predictability regression, the probabilities of finding the same signs in simulations as

in the data are less than 1%. Thus, the simulation evidence clearly shows that the patterns in volatility loadings we

find in the data cannot be simply attributed to the mechanics of construction of the realized variance estimators or the

finite-sample considerations.

5.2. Empirical Analysis

We consider various robustness checks concerning the construction of the realized variances in the data. For the

first round of robustness check, we maintain the industrial production growth data to measure the realized variances
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and modify the construction of ex-ante good and bad uncertainties in several dimensions. First, to mitigate potential

small-sample concerns with the realized variance estimators, we consider removing the conditional (rather than the

unconditional) mean of industrial production growth in constructing good and bad realized variances. We do so by

using the residuals based on fitting an AR(1) to industrial production growth. The summary of the key results for this

specification is reported in Table 10. By and large, the findings are qualitatively and quantitatively similar to those

reported in the benchmark specification. It is worth emphasizing that asymptotically the conditional mean dynamics

do not impact the properties of the realized variance. Our empirical results indicate the conditional mean dynamics

also do not affect the realized variance in our finite sample.

Next, we consider changing the cutoff point for defining good and bad uncertainty. Instead of using the uncon-

ditional mean, now the good variance state is defined for the states in which industrial production is above its 75

percentile. Table 11 provides key results for this case and shows that the main findings for our benchmark specifi-

cation are intact. Further, instead of taking the logs of the realized variances and exponentiating the fitted values,

we run standard OLS regressions on the levels of the positive and negative realized variances and use directly the

fitted values from these regressions as proxies for good and bad uncertainties, respectively. Alternatively, while in

our benchmark approach we predict the realized variances over a three-year forecast window, for robustness, we also

consider shorter and longer horizons, such as one and five-year window specification. We also expand the set of the

predictive variables and include the term spread, defined as the difference between the 10-year and 3-month Treasury

yield, to the benchmark set of predictors. We also experimented with removing some of the variables (e.g., default

spread, price-dividend ratio, risk free rate) from the benchmark set of predictive variables. Finally, we also consider

using the cross-section of industry portfolios instead of size and book-to market to identify the betas and market prices

of risk. In the interest of space we do not report these additional tables but note that across all of these modifications

of the benchmark specification, we confirm our key empirical results regarding: (i) the relation between good and

bad uncertainties and the future macroeconomic growth rates, (ii) the relation between the two uncertainties and the

aggregate asset prices, and (iii) the market prices and exposures to the three underlying risks.

For the second set of robustness checks, we consider monthly earnings data, instead of industrial production data,

to construct realized variances. Table 12 shows a summary of the key macroeconomic and asset pricing implications

of the good and bad uncertainty using these alternative measures of volatility. The Table shows that the earnings-based

uncertainty measures deliver very similar implications to the industrial-production based ones. Indeed, as shown in

Panel A, with a single exception of R&D investment growth, all future macroeconomic growth rates increase following

positive shocks to expected growth, positive shocks to good uncertainty, and negative shocks to bad uncertainty. As

shown in Panel B of the Table, the contemporaneous responses of aggregate asset prices to uncertainty based on

earnings volatility measures are very similar to those based on industrial production measures of volatility. With the

exception of the risk-free rate projection, this evidence again is consistent with interpreting the high expected growth,

high good uncertainty, and low bad uncertainty as good states for asset valuations. This conclusion is confirmed in

Panel C which documents that the market prices of expected consumption and good uncertainty risks are positive, and
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that of bad uncertainty is negative. As in the benchmark specification, the estimated equity exposures to these risks

factors have the same sign as the market prices of risks, so the direct contribution of each macroeconomic risk to the

equity risk premium is positive.

Using the estimated expected growth and uncertainty measures we verify whether the results are robust to the

post-war sample. As shown in Table 13, for the majority of the considered projections, our benchmark conclusions

for the relation of the macroeconomic volatilities to growth and asset prices are unchanged.

6. Conclusion

In this paper we present an economic framework and empirical measures for studying good and bad aggregate

uncertainty. We define good and bad uncertainty as the variance associated with the respective positive and negative

innovations of an underlying macroeconomic variable. We show that in the model and in the data, fluctuations in good

and bad macroeconomic uncertainty have a significant and opposite impact on future growth and asset valuations.

We develop a version of the long-run risk model which features separate volatilities for good and bad consumption

shocks, and feedback from volatilities to future growth. We show that the equity prices decline with bad uncertainty

and rise with good uncertainty, provided there is a sufficiently large feedback from good uncertainty to future growth.

Moreover, we show that the market price of risk and equity beta are both positive for good uncertainty, while they are

both negative for bad uncertainty. This implies that both good and bad uncertainty risks contribute positively to the

risk premia.

Empirically, we use the realized semivariance measures based on the industrial production data to construct good

and bad uncertainties, and show the model implications are consistent with the data. Specifically, future economic

growth, such as consumption, dividend, earnings, GDP, and investment, rise with good uncertainty, while they fall

with bad uncertainty. Consistent with the model, equity prices and interest rates increase (decrease) with good (bad)

uncertainty. Finally, using the cross-section of assets we estimate a positive market price of good uncertainty risk,

and a negative one for bad uncertainty risk. In all, our theoretical and empirical evidence shows the importance of

separate movements of good and bad uncertainty for economic growth and asset prices. We leave it for future work to

provide explicit economic channels, linking good and bad uncertainty risks with technological aspects of production,

investment, and financing opportunities.

Appendix A. Realized Variance Asymptotics

Consider a jump-diffusion process yt:

yt =

∫ t

0

µsds +

∫ t

0

σsdWs + Jt, (A.1)

where µs is locally bounded predictable drift process, σs is a strictly positive càdlàg volatility process, Jt is a finite

activity jump process, and µs, σs and Jt are adapted to some common filtration F t.
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The realized semivarainces are defined as follows:

RVp,t+1 =
∑N

i=1 I(∆yt+ i
N
≥ 0)∆y2

t+ i
N

,

RVn,t+1 =
∑N

i=1 I(∆yt+ i
N
< 0)∆y2

t+ i
N

.

Barndorff-Nielsen, Kinnebrock, and Shephard (2010) derive the behaviour of this statistic under in-fill asymp-

totics, and in particular, they show that:

RVp,t+1

p
→

1

2

∫ t+1

t

σ2
sds +

∑

t≤s≤t+1

I(∆Js ≥ 0)∆J2
s ,

RVn,t+1

p
→

1

2

∫ t+1

t

σ2
sds +

∑

t≤s≤t+1

I(∆Js < 0)∆J2
s .

Intuitively, the positive (negative) semivariances are informative about positive (negative) squared jumps.

While the above theory considers jump-diffusion processes, Diop et al. (2003) provide asymptotic convergence

results and Central Limit theorems for the quadratic variations of pure jump Itô semimartingales.

Appendix B. Benchmark Model Solution

In case when εi,t+1, i = {g, b}, follows a compensated compound Poisson distribution with time-varying intensity

lt, its log moment-generating function is given by,

log Ete
uεi,t+1 = lt(α(u) − uα′(0) − 1), (B.1)

where α(u) = Ete
uJi,t+1 denotes the moment-generating function of the underlying positive jumps. The conditional

variance of the compound Poisson is given by Vi,t = Vartεi,t+1 = ltα
′′(0),which implies that its log moment-generating

function is linear in its variance,

log Ete
uεi,t+1 = Vt f (u), for f (u) =

α(u) − uα′(0) − 1

α′′(0)
. (B.2)

Because the underlying Poisson jumps are positive, (Ji,t+1 > 0), f (u) is positive, convex, and asymmetric, so that

f (u) > f (−u) for u > 0.18

In case when εi,t+1, i = {g, b}, follows a demeaned Gamma distribution with a unit scale and time-varying shape

18To prove asymmetry, note that because jump distribution is positively skewed, f ′′′(u) > 0. This implies that f (u) − f (−u) is increasing in u, so

that f (u) − f (−u) > 0 for u > 0.
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parameter Vt, Bekaert and Engstrom (2009) show that its log moment-generating function satisfies

log Ete
uεi,t+1 = Vt f (u), (B.3)

for f (u) = −(log(1 − u) + u). The function f (u) is positive, convex, and asymmetric, so that f (u) > f (−u) for u > 0.

The solution of the model relies on a standard log-linearization of returns,

rc,t+1 ≈ κ0 + κ1 pct+1 − pct + ∆ct+1. (B.4)

In equilibrium, the price-consumption ratio is linear in the expected growth and uncertainty factors, as shown by

equation (10). The log-linearization parameter κ1 satisfies the equation,

log κ1 = log δ + (1 −
1

ψ
)µc + Agv(1 − κ1νg)Vg0

+ Abv(1 − κ1νb)Vb0

+ θκ2
1

[

1

2
A2

gvσ
2
gw +

1

2
A2

bvσ
2
bw + αAgvAbvσgwσbw

]

. (B.5)

The real stochastic discount factor is equal to:

mt+1 = m0 + mxxt + mgvVgt + mbvVbt

− λxσx(εg,t+1 − εb,t+1) − λgvσgwwg,t+1

− λbvσbwwb,t+1, (B.6)

where the market prices of risk are specified in equations (14)-(16), and the loadings on the state variables are given

by,

mx = −γ + (1 − θ)(1 − κ1ρ)Ax = −
1

ψ
,

mgv = (1 − θ)(Agv(1 − κ1νg) − κ1Axτg)

=
1 − θ

θ
f (θ((1 −

1

ψ
)σc + κ1Axσx)),

mbv = (1 − θ)(Abv(1 − κ1νb) + κ1Axτb)

=
1 − θ

θ
f (θ(−(1 −

1

ψ
)σc − κ1Axσx)).

Note that we can alternatively re-write the stochastic discount factor in terms of Vgt + Vbt and Vgt − Vbt, which
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capture the total variance and skewness of consumption dynamics:

mt+1 = m0 + mxxt +
mgv + mbv

2
(Vgt + Vbt)

+
mgv − mbv

2
(Vgt − Vbt)

− λxσx(εg,t+1 − εb,t+1)

−
λgv + λbv

2
(σgwwg,t+1 + σbwwb,t+1)

−
λgv − λbv

2
(σgwwg,t+1 − σbwwb,t+1). (B.7)

The last two shocks are equal to the innovations into the total variance and skewness of consumption. As λgv > 0 and

λbv < 0, the market price of risk of skewness is positive: agents dislike the states with low (negative) skewness.

The bond loadings satisfy the recursive equations:

Bx,n = ρBx,n−1 − mx, (B.8)

Bgv,n = νgBgv,n−1 − mgv

− f (−σx(λx + Bx,n−1)) + τgBx,n−1, (B.9)

Bbv,n = νbBbv,n−1 − mbv

− f (σx(λx + Bx,n−1)) − τbBx,n−1, (B.10)

for Bx,0 = Bgv,0 = Bbv,0 = 0.

Similarly, the return of the divided-paying asset can be expressed by:

rd,t+1 ≈ κ0,d + κ1,d pdt+1 − pdt + ∆dt+1, (B.11)

where κ0,d and κ1,d are the log-linearization parameters, and κ1,d satisfies:

logκ1,d = m0 + µd + Hgv(1 − κ1,dνg)Vg0

+ Hbv(1 − κ1,dνb)Vb0

+ κ2
1,d

[

1

2
H2

gvσ
2
gw +

1

2
H2

bvσ
2
bw + αHgvHbvσgwσbw

]

. (B.12)

The return dynamics can be expressed in the following way:

rd,t+1 = Et[rd,t+1] + βxσx(εg,t+1 − εb,t+1)

+ βgvσgwwg,t+1 + βbvσbwwb,t+1 + σdud,t+1, (B.13)
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where the equity betas are given by,

βx = κ1,dHx, βgv = κ1,dHgv, and βbv = κ1,dHbv. (B.14)

Hx,Hgv and Hbv are the equilibrium loadings of the price-dividend ratio on predictable consumption growth, good

uncertainty bad uncertainty Hbv, respectively, and are given by:

Hx =
φx + mx

1 − κ1,dρ
, (B.15)

Hgv =
f (κ1,dHxσx − λxσx) + κ1,dHxτg + mgv

1 − κ1,dνg

, (B.16)

Hbv =
f (−κ1,dHxσx + λxσx) − κ1,dHxτb + mbv

1 − κ1,dνb

, (B.17)

Note that we can alternatively re-write the return dynamics in terms of Vgt + Vbt and Vgt − Vbt, which capture the

total variance and skewness of consumption dynamics:

rd,t+1 = Et[rd,t+1] + βxσx(εg,t+1 − εb,t+1)

+
βgv + βbv

2
σgw(wg,t+1 + wb,t+1)

+
βgv − βbv

2
σbw(wg,t+1 − wb,t+1) + σdud,t+1, (B.18)

As βgv > 0 and βbv < 0, equity exposure to skewness risk is positive: equities fall at times of low (negative) skewness.

It follows that the conditional variance of returns is time varying and driven by good and bad uncertainties:

Vartrd,t+1 = β
2
gvσ

2
gw + β

2
bvσ

2
bw + σ

2
d + β

2
xσ

2
x(Vgt + Vbt). (B.19)

In particular, the variance of returns increases at times of high good or bad uncertainty.

In levels, the equity risk premium satisfies,

EtRd,t+1 − R f ,t ≈ log Ere
rd,t+1−r f ,t

=
[

f (−λxσx) − f ((βx − λx)σx) + f (βxσx)
]

Vgt

+
[

f (λxσx) − f ((λx − βx)σx) + f (−βxσx)
]

Vbt

+ βgvλgvσ
2
gw + βgvλbvσ

2
bw

+ ασbwσgw(βgvλbv + βbvλgv).

(B.20)

Under standard parameter configuration, the equity premium loadings on good and bad volatility are positive.

Indeed, notice that these loadings can be written as, f (a) + f (b) − f (a + b). As λx > 0 and βx > 0, a and b have
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opposite signs. Without loss of generality, let a > 0 and b < 0. Suppose a + b > 0. Then, as f (u) is positive and

increasing for u > 0, a > a + b > 0 ⇒ f (a) + f (b) > f (a) > f (a + b). Alternatively, suppose a + b < 0. Then,

as f (u) is positive and decreasing for u < 0, 0 > a + b > b ⇒ f (a) + f (b) > f (b) > f (a + b). In both cases,

f (a) + f (b) − f (a + b) > 0.

Appendix C. Long-Run Risks Model Specification

In a standard long-run risks model consumption dynamics satisfies

∆ct+1 = µ + xt + σtηt+1, (C.1)

xt+1 = ρxt + ϕeσtεt+1, (C.2)

σ2
t+1 = σ2

c + ν(σ
2
t − σ

2
c) + σwwt+1, (C.3)

∆dt+1 = µd + φxt + πσtηt+1 + ϕdσtud,t+1. (C.4)

where ρ governs the persistence of expected consumption growth xt, and ν determines the persistence of the con-

ditional aggregate volatility σ2
t . ηt is a short-run consumption shock, εt is the shock to the expected consumption

growth, and wt+1 is the shock to the conditional volatility of consumption growth; for parsimony, these three shocks

are assumed to be i.i.d Normal. The parameter configuration for consumption and dividend dynamics used in our

model simulation is identical to Bansal et al. (2011), and is given in Table B1.
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Table B1. Model calibration. The table shows the calibrated parameters of the long-run risks model, monthly frequency.

Preferences δ γ ψ

0.9987 10 2

Consumption µ ρ ϕe

0.0015 0.975 0.038

Volatility σc ν σw

0.0072 0.999 2.8e-06

Dividend µd φ ϕd π

0.0015 2.5 5.96 2.6
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Table 1. Data summary statistics.

The table shows summary statistics for the macroeconomic variables (Panel A), aggregate asset prices (Panel B), and the realized variance measures

(Panel C). Consumption, private GDP, as well as capital and R&D investment series are real and per capita. Dividends, earnings, stock prices and

returns are computed for a broad market portfolio. The real risk-free rate corresponds to a 3-month Tbill rate minus expected inflation. Default

spread is the difference between the yields on BAA- and AAA-rated corporate bonds. The total realized variance, RV , is based on the sum of

squared observations of demeaned monthly industrial production growth over 1-year, re-scaled to match the unconditional variance of consumption

growth. The positive and negative realized semivariances, RVp and RVn, decompose the total realized variance into the components pertaining

to only positive and negative movements in industrial production growth, respectively. All growth rates and returns are in percentages, and the

realized variances are multiplied by 10,000. Data on R&D investment are annual from 1954 to 2008, and all the other data are annual from 1930 to

2012.

Mean Std. Dev. AR(1)

Panel A: Macro Growth Rates

Consumption growth 1.84 2.16 0.50

GDP growth 2.04 12.91 0.41

Earnings growth 1.77 26.11 0.01

Market dividend growth 1.27 11.32 0.20

Capital investment growth 1.75 14.80 0.42

R&D investment growth 3.51 4.69 0.18

Panel B: Asset Prices

Market return 5.79 19.85 -0.01

Market price-dividend ratio 3.39 0.45 0.88

Real risk-free rate 0.34 2.55 0.73

Default spread 1.21 0.81 0.72

Panel C: Realized Volatility

RVp 2.34 7.37 0.24

RVn 2.27 5.68 0.29

RV 4.61 10.91 0.44
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Table 2. Macroeconomic uncertainties and aggregate growth.

The table shows the predictability evidence from the projection of future macroeconomic growth rates on the current expected consumption growth

x, good uncertainty Vg, and bad uncertainty Vb : 1
h

∑h
j=1 ∆yt+ j = ah+b′

h
[xt ,Vgt ,Vbt]+error. The Table reports the slope coefficients bh, t−statistics,

and the adjusted R2s for the regression horizons of h = 1, 3 and 5 years for the corresponding aggregate series y. The p−values are computed for

the Wald test for the joint significance of good and bad uncertainty, H0 : bgv = bbv = 0. Standard errors are Newey-West adjusted. The notations

†, ∗, and � indicate the significance of the coefficients at 10%, 5%, and 1% levels respectively, against the economically-motivated, alternative

one-sided hypotheses bx > 0, bgv > 0, and bbv < 0. The data are annual from 1930 to 2012.

x Vb Vg Ad j − R2 p-value

Consumption Growth:

1Y Ahead 1.98� −64.76† 12.97 0.51 0.25

[4.98] [−1.42] [0.83]

3Y Ahead 1.07� −22.56 12.67 0.33 0.05

[2.98] [−0.68] [1.21]

5Y Ahead 0.46� −2.20 6.81 0.18 < 0.01

[2.93] [−0.08] [0.73]

GDP Growth:

1Y Ahead 4.87� −733.08† 277.73† 0.07 0.25

[7.37] [−1.62] [1.44]

3Y Ahead 2.53∗ −410.36† 180.07† 0.04 0.28

[2.13] [−1.29] [1.44]

5Y Ahead 1.46� −142.27∗ 66.85� 0.01 0.02

[2.53] [−1.72] [2.51]

Market Dividend Growth:

1Y Ahead 8.93� −474.89� 55.04 0.41 < 0.01

[4.46] [−2.41] [0.84]

3Y Ahead 2.89† −107.83 60.23 0.08 0.16

[1.45] [−0.66] [1.17]

5Y Ahead 1.22† −182.40∗ 79.83� 0.04 0.01

[1.52] [−2.02] [2.67]

Earnings Growth:

1Y Ahead 12.34� −682.77† 134.02 0.10 < 0.01

[3.59] [−1.29] [0.66]

3Y Ahead 0.78 60.55 21.86 −0.02 0.46

[0.28] [0.19] [0.19]

5Y Ahead 0.85 −155.41 98.54∗ 0.01 < 0.01

[0.78] [−0.97] [1.84]
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Table 3. Macroeconomic uncertainties and investment.

The table shows the predictability evidence from the projection of future investment growth rates on the current expected consumption growth x,

good uncertainty Vg, and bad uncertainty Vb : 1
h

∑h
j=1 ∆yt+ j = ah + b′

h
[xt ,Vgt ,Vbt] + error. The Table reports the slope coefficients bh, t−statistics,

and the adjusted R2s for the regression horizons of h = 1, 3 and 5 years for the corresponding investment series y. The p−values are computed for

the Wald test for the joint significance of good and bad uncertainty, H0 : bgv = bbv = 0. Standard errors are Newey-West adjusted. The notations

†, ∗, and � indicate the significance of the coefficients at 10%, 5%, and 1% levels respectively, against the economically-motivated, alternative

one-sided hypotheses bx > 0, bgv > 0, and bbv < 0. R&D investment data are from 1954 to 2008, R&D stock data are from 1960 to 2007, and all

the other data are annual from 1930 to 2012.

x Vb Vg Ad j − R2 p-value

Gross Private Capital Investment Growth:

1Y Ahead 24.85� −2309.41� 912.46� 0.40 < 0.01

[4.42] [−2.85] [3.41]

3Y Ahead 7.76� −891.16∗ 542.32� 0.28 < 0.01

[2.61] [−2.18] [3.60]

5Y Ahead 3.53� −399.32∗ 287.53� 0.29 < 0.01

[2.46] [−2.17] [4.31]

Nonresidential Capital Investment Growth:

1Y Ahead 13.81� −789.80∗ 226.19† 0.45 0.07

[6.74] [−1.83] [1.51]

3Y Ahead 5.72� −272.28 167.58∗ 0.22 < 0.01

[3.04] [−1.26] [2.11]

5Y Ahead 2.90� −124.54 93.97∗ 0.18 0.01

[3.44] [−1.01] [2.15]

R&D Investment Growth:

1Y Ahead 4.45� −822.83� 571.37∗ 0.28 0.05

[4.05] [−2.43] [2.16]

3Y Ahead 1.53� −980.22� 885.88� 0.23 < 0.01

[2.59] [−2.59] [4.76]

5Y Ahead 0.59† −847.67� 775.23� 0.24 < 0.01

[1.59] [−2.88] [4.86]

R&D Stock Growth:

1Y Ahead 1.13� −983.80� 308.73∗ 0.55 < 0.01

[3.83] [−3.31] [1.74]

3Y Ahead 1.05� −950.27� 342.17† 0.46 < 0.01

[3.60] [−2.86] [1.57]

5Y Ahead 0.68� −998.32� 428.55∗ 0.41 < 0.01

[2.54] [−2.86] [1.81]

Utility Patents Count Growth:

1Y Ahead 2.57∗ −209.98 13.11 0.11 0.11

[1.72] [−1.01] [0.15]

3Y Ahead 2.40∗ −158.15∗ 18.55 0.13 0.02

[1.88] [−1.78] [0.64]

5Y Ahead 1.54∗ −159.60∗ 26.64 0.14 < 0.01

[1.96] [−1.94] [0.92]
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Table 4. Macroeconomic uncertainties and aggregate prices.

The table reports the evidence from the projections of the aggregate asset-price variables on the contemporaneous expected consumption growth x,

and the good and bad uncertainty variables, Vg and Vb. Panel A shows the regression results based on the levels of the variables, and Panel B shows

the output for the first differences. The Table reports the slope coefficients, t−statistics, the adjusted R2s, and the p−values for the Wald test for the

joint significance of good and bad uncertainty, H0 : bgv = bbv = 0. Standard errors are Newey-West adjusted. The notations †, ∗, and � indicate

the significance of the coefficients at 10%, 5%, and 1% levels respectively, against the economically-motivated, alternative one-sided hypotheses

bx > 0, bgv > 0, and bbv < 0 for the market price-dividend ratio and the real risk-free rate, and bx < 0, bgv < 0, and bbv > 0 for the default spread.

The data are annual from 1930 to 2012.

Panel A: Level-Based Projection

x Vb Vg Ad j − R2 p-value

Market price- 8.82 −2313.28� 279.27 0.21 < 0.01

dividend ratio [0.94] [−2.67] [0.93]

Real Risk-Free Rate 0.05 −222.24� 80.50� 0.21 < 0.01

[0.08] [−2.36] [2.74]

Default Spread −0.36∗ 50.54� −3.80 0.47 < 0.01

[−1.81] [2.99] [−0.52]

Panel B: First Difference-Based Projection

∆x ∆Vb ∆Vg Ad j − R2 p-value

∆Market price- 18.57� −1353.26� 448.49� 0.61 < 0.01

dividend ratio [9.97] [−4.21] [3.11]

∆Real Risk-Free Rate 0.01 −107.47∗ 31.75 0.16 < 0.01

[0.04] [−1.65] [1.19]

∆Default Spread −0.26� 40.46� −10.64∗ 0.30 0.01

[−2.61] [2.84] [−1.98]

Table 5. Macroeconomic uncertainties and equity returns.

The table reports the evidence from the projections of future excess returns (Panel A) and realized variance of returns (Panel B) on expected

consumption growth x, and the good and bad uncertainty variables, Vg and Vb. The Table reports the slope coefficients, t−statistics, the adjusted

R2s, and the p−values for the Wald test for the joint significance of good and bad uncertainty, H0 : bgv = bbv = 0. Standard errors are Newey-West

adjusted. The notations †, ∗, and � indicate the significance of the coefficients at 10%, 5%, and 1% levels respectively, against the economically-

motivated alternative hypotheses bx , 0, bgv > 0, and bbv > 0. The data are annual from 1930 to 2012.

x Vb Vg Ad j − R2 p-value

Panel A: Excess Return Projection

1Y Ahead −1.91 198.57 19.85 −0.01 0.05

[−0.45] [0.45] [0.12]

3Y Ahead −1.41 82.02 69.42 0.09 < 0.01

[−1.15] [0.37] [0.90]

5Y Ahead −2.04∗ 227.97† −30.34 0.08 0.14

[−2.44] [1.54] [−0.74]

Panel B: Return Volatility Projection

1Y Ahead −1.94† 24.39 49.10∗ 0.34 < 0.01

[−1.66] [0.34] [2.19]

3Y Ahead −1.39 64.42 3.35 0.16 0.02

[−1.15] [0.87] [0.16]

5Y Ahead −0.63 34.51 10.75 0.15 < 0.01

[−0.80] [0.63] [0.75]
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Table 6. Cross-sectional implications.

The table shows the estimates of the market prices of risks (Panel A) and asset exposures (Panel B) to expected growth, good uncertainty, and bad

uncertainty risks. The cross-section includes the market (MKT), twenty five portfolios sorted on size (S) and book-to-market (BM), and Credit

(DEF) and Term premium (TERM) bond portfolios. The reported betas and the market prices of risks are divided by 100. T-statistics are in brackets,

and are based on Newey-West standard errors from GMM estimation. The notations †, ∗, and � indicate the significance of the coefficients at 10%,

5%, and 1% levels respectively, against the economically-motivated, alternative one-sided hypotheses that λx, βx, λgv, and βgv are positive, and λbv

and βbv are negative. Data are annual from 1930 to 2012.

Panel A: Market-Prices of Risk (Λ/100)

λx λbv λgv

λ 0.95� −66.06∗ 38.58∗

[4.37] [−1.82] [2.13]

Panel B: Exposures to Risks (β/100)

βx βbv βgv βx βbv βgv

MKT 25.08� −1537.04� 613.89� S3BM4 33.53� −1591.13� 707.77�

[15.33] [−4.87] [3.95] [13.47] [−3.45] [3.16]

S1BM1 34.49� −2888.64� 1016.18� S3BM5 37.73� −1493.40� 696.40�

[6.16] [−4.24] [2.99] [13.10] [−2.89] [2.97]

S1BM2 47.06� −1351.55∗ 939.72� S4BM1 25.92� −1809.04� 732.72�

[10.37] [−1.72] [2.72] [9.56] [−5.70] [4.47]

S1BM3 40.52� −2058.56� 919.29� S4BM2 28.82� −1585.84� 757.34�

[14.79] [−3.90] [3.79] [12.48] [−3.89] [4.10]

S1BM4 42.95� −1919.89� 1001.33� S4BM3 32.46� −1790.46� 802.42�

[12.81] [−3.88] [4.54] [14.91] [−4.30] [3.97]

S1BM5 46.40� −1943.51� 1049.88� S4BM4 35.95� −2178.10� 975.61�

[14.18] [−3.66] [4.38] [22.20] [−8.36] [7.03]

S2BM1 35.86� −1351.02∗ 615.07∗ S4BM5 39.92� −1871.59� 1085.74�

[10.85] [−2.18] [2.10] [12.09] [−3.91] [4.38]

S2BM2 37.06� −1225.38∗ 588.72� S5BM1 23.11� −1592.88� 563.17�

[15.11] [−2.30] [2.44] [9.95] [−4.26] [3.01]

S2BM3 37.04� −1637.18� 775.61� S5BM2 24.51� −1684.39� 683.83�

[12.08] [−2.56] [2.79] [14.23] [−6.77] [5.74]

S2BM4 38.42� −1672.86� 863.86� S5BM3 27.41� −1617.78� 733.52�

[15.77] [−3.81] [4.19] [11.65] [−6.94] [6.90]

S2BM5 36.69� −2316.27� 1000.77� S5BM4 31.47� −1503.41� 734.06�

[13.68] [−5.37] [4.45] [11.36] [−4.17] [4.26]

S3BM1 33.92� −1754.57� 812.16� S5BM5 27.62� −3842.95� 1570.43�

[12.46] [−3.32] [3.49] [11.72] [−15.80] [15.55]

S3BM2 31.04� −1648.15� 634.32� DEF 8.36� −388.33� 33.08

[13.45] [−3.87] [3.32] [6.60] [−3.15] [0.57]

S3BM3 31.62� −1542.86� 640.69� TERM 1.80† −227.44� 89.18∗

[17.24] [−3.53] [3.14] [1.46] [−2.46] [1.91]
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Table 7. Risk premia decomposition.

The table shows the estimates of risk premia in the data and in the model, and the decomposition of the model risk premia into the compensations

for expected growth, good uncertainty, bad uncertainty, and the covariance components. The cross-section includes the market (MKT), twenty five

portfolios sorted on size (S) and book-to-market (BM), and Credit (DEF) and Term premium (TERM) bond portfolios. Data are annual from 1930

to 2012.

Total Model Decomposition

Model Data RPx,x RPbv,bv RPgv,gv RPx,bv RPx,gv RPbv,gv

MKT 8.15 7.17 10.27 9.92 12.98 1.12 −5.64 −20.51

S1BM1 11.04 5.48 14.12 18.65 21.49 1.81 −8.35 −36.68

S1BM2 16.15 10.78 19.27 8.72 19.87 1.58 −9.84 −23.46

S1BM3 13.35 13.93 16.59 13.29 19.44 1.67 −8.85 −28.79

S1BM4 14.55 16.43 17.59 12.39 21.17 1.68 −9.48 −28.80

S1BM5 15.74 18.68 19.00 12.55 22.20 1.77 −10.13 −29.65

S2BM1 11.52 8.47 14.68 8.72 13.01 1.32 −7.15 −19.05

S2BM2 11.91 11.97 15.17 7.91 12.45 1.30 −7.22 −17.70

S2BM3 12.21 13.71 15.17 10.57 16.40 1.44 −7.87 −23.50

S2BM4 12.94 14.59 15.73 10.80 18.27 1.49 −8.37 −24.98

S2BM5 12.27 15.90 15.03 14.95 21.16 1.67 −8.60 −31.94

S3BM1 11.31 9.40 13.89 11.33 17.17 1.41 −7.56 −24.93

S3BM2 9.85 11.39 12.71 10.64 13.41 1.30 −6.54 −21.67

S3BM3 10.17 12.09 12.95 9.96 13.55 1.28 −6.64 −20.92

S3BM4 10.95 13.28 13.73 10.27 14.97 1.34 −7.14 −22.22

S3BM5 12.25 14.73 15.45 9.64 14.72 1.41 −7.69 −21.29

S4BM1 8.58 8.54 10.61 11.68 15.49 1.24 −6.16 −24.28

S4BM2 9.78 9.18 11.80 10.24 16.01 1.23 −6.66 −22.85

S4BM3 10.80 11.28 13.29 11.56 16.97 1.39 −7.32 −25.08

S4BM4 12.10 12.46 14.72 14.06 20.63 1.60 −8.41 −30.50

S4BM5 14.07 12.91 16.35 12.08 22.96 1.59 −9.35 −29.57

S5BM1 7.30 7.07 9.46 10.28 11.91 1.10 −5.18 −20.27

S5BM2 8.10 7.17 10.04 10.87 14.46 1.16 −5.80 −22.63

S5BM3 9.23 8.27 11.22 10.44 15.51 1.21 −6.38 −22.78

S5BM4 10.55 8.54 12.89 9.70 15.52 1.26 −6.95 −21.88

S5BM5 10.23 11.03 11.31 24.81 33.21 1.98 −9.30 −51.77

DEF 2.15 1.98 3.42 2.51 0.70 0.33 −1.28 −3.53

TERM 0.64 1.82 0.74 1.47 1.89 0.12 −0.56 −3.01
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Table 8. Simulation analysis of macroeconomic uncertainties and aggregate growth.

The table shows the Monte-Carlo predictability evidence for the projection of future consumption and dividend growth rates on the current expected consumption growth x, good uncertainty Vg,

and bad uncertainty Vb : 1
h

∑h
j=1 ∆yt+ j = ah + b′

h
[xt ,Vgt ,Vbt]+ error. The table reports the population and small-sample estimates (corresponding to 5%, 50% and 95% percentile of the distribution

in simulations) of the slope coefficients and R2s. The consumption, dividends, and asset prices are simulated on monthly frequency and aggregated to annual horizon under the long-run risks,

single-volatility model configuration of Bansal, Kiku, and Yaron (2013). Realized positive and negative variances are constructed from the model-simulated demeaned monthly consumption

growth rate over the year. The ex-ante uncertainty measures correspond to the projections of the log realized variances on the set of predictors, such as realized positive and negative variances,

consumption growth, market return, the market-price dividend ratio, and the risk-free rate. Small-sample evidence is based on 100,000 simulations of 83 years of monthly data; the population

estimates are based on a long simulation of 1,000,000 years of data.

x Vb Vg R2

Pop 5% Med 95% Pop 5% Med 95% Pop 5% Med 95% Pop 5% Med 95%

Benchmark Model:

Consumption:

1Y Ahead 1.57 1.22 2.00 3.00 8.53 -10.58 53.56 144.74 -9.56 -147.41 -56.91 8.67 0.41 0.24 0.42 0.59

3Y Ahead 1.03 0.64 1.02 1.41 1.19 -35.10 1.57 39.67 -1.61 -38.30 -2.01 33.39 0.36 0.16 0.38 0.60

5Y Ahead 0.78 0.24 0.67 1.13 0.24 -45.65 -2.81 40.08 -0.53 -38.34 2.80 44.23 0.29 0.09 0.31 0.56

Dividend:

1Y Ahead 3.95 -0.47 5.37 12.76 19.89 -480.68 106.35 788.62 -51.52 -1087.24 -282.10 254.73 0.09 0.01 0.14 0.33

3Y Ahead 2.57 -0.89 2.68 6.42 1.71 -357.82 -2.84 354.48 -12.72 -428.53 -52.35 277.72 0.09 -0.01 0.12 0.35

5Y Ahead 1.96 -1.21 1.75 4.82 -0.20 -304.46 -11.11 277.78 -6.72 -319.33 -21.01 257.18 0.08 -0.02 0.12 0.38

Straight OLS Model:

Consumption:

1Y Ahead 3.15 1.78 2.60 3.71 132.97 35.13 115.83 241.12 -132.80 -240.56 -116.93 -37.91 0.46 0.26 0.45 0.62

3Y Ahead 1.00 1.00 1.00 1.00 0.00 -0.00 0.00 0.00 0.00 -0.00 0.00 0.00 0.36 0.15 0.37 0.59

5Y Ahead 0.58 0.14 0.57 0.95 -14.54 -56.22 -13.27 24.80 14.52 -23.91 13.59 55.94 0.30 0.08 0.30 0.56

Dividend:

1Y Ahead 12.29 -2.05 7.76 18.49 660.74 -782.68 336.74 1518.28 -707.98 -1753.33 -545.05 528.96 0.13 0.01 0.16 0.36

3Y Ahead 3.96 -1.90 2.86 7.67 109.97 -488.25 9.05 503.43 -126.15 -575.38 -74.37 402.16 0.09 -0.01 0.11 0.34

5Y Ahead 2.33 -2.06 1.60 5.21 29.93 -406.45 -28.67 329.97 -39.86 -370.39 -8.94 355.17 0.08 -0.02 0.11 0.37

AR(1) Adjustment Model:

Consumption:

1Y Ahead 1.57 1.22 2.00 2.99 8.88 -9.97 54.65 147.90 -9.83 -149.61 -58.09 8.32 0.41 0.23 0.42 0.59

3Y Ahead 1.02 0.64 1.01 1.41 1.12 -36.22 1.43 39.92 -1.50 -38.38 -1.80 34.87 0.36 0.16 0.38 0.60

5Y Ahead 0.78 0.24 0.67 1.13 0.12 -47.10 -3.13 40.17 -0.30 -38.21 3.09 45.67 0.29 0.09 0.31 0.56

Dividend:

1Y Ahead 3.91 -0.48 5.35 12.71 19.92 -492.75 110.35 801.79 -50.16 -1098.71 -285.97 267.96 0.09 0.01 0.14 0.33

3Y Ahead 2.54 -0.88 2.67 6.42 1.95 -365.16 -3.93 360.27 -12.12 -431.43 -52.98 286.43 0.09 -0.01 0.12 0.35

5Y Ahead 1.92 -1.20 1.75 4.81 -0.35 -310.83 -12.29 282.25 -5.62 -322.12 -20.90 262.79 0.08 -0.02 0.12 0.38
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Table 9. Model-implied significance of the volatility coefficients.

The table shows the Monte-Carlo predictability evidence for the projection of future consumption and dividend growth rates on the current expected

consumption growth x, good uncertainty Vg, and bad uncertainty Vb : 1
h

∑h
j=1 ∆yt+ j = ah + b′

h
[xt ,Vgt ,Vbt] + error. The table reports the fraction

of samples in which bad (good) uncertainty loadings at 1-, 3-, and 5-year maturities are all negative (positive). The data are simulated on monthly

frequency and aggregated to annual horizon under the long-run risks, single-volatility model configuration of Bansal, Kiku, and Yaron (2013).

Realized positive and negative variances are constructed from the model-simulated demeaned monthly consumption growth rate over the year.

The ex-ante uncertainty measures correspond to the projections of the log realized variances on the set of predictors, such as realized positive and

negative variances, consumption growth, market return, the market-price dividend ratio, and the risk-free rate. Small-sample evidence is based on

100,000 simulations of 83 years of monthly data.

Pr(bbv < 0) Pr(bgv > 0) Pr(bbv<0 & bgv > 0)

Benchmark Model:

Consumption Growth: 0.05 0.04 0.03

Dividend Growth: 0.24 0.12 0.09

Joint: 0.02 0.01 0.01

Straight OLS Model:

Consumption Growth: 0.004 0.004 0.002

Dividend Growth: 0.21 0.13 0.11

Joint: 0.002 0.001 0.001

AR(1) Adjustment Model:

Consumption Growth: 0.05 0.04 0.03

Dividend Growth: 0.24 0.12 0.09

Joint: 0.02 0.01 0.01
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Table 10. Conditionally demeaned industrial production-based uncertainties.

The table presents a summary of the macroeconomic and asset-price evidence using alternative measures of good and bad uncertainty based on

monthly, conditionally demeaned, industrial-production data. The conditional mean is estimated based on an AR(1) model of industrial production

growth. Panel A documents the slope coefficients, t−statistics and the R2 in the projections of one-year ahead macroeconomic growth rates on

the expected growth x, good uncertainty Vg, and bad uncertainty Vb. Panel B shows the evidence from the contemporaneous regressions of the

aggregate asset prices on these factors. Panel C shows the estimates of the market prices of risks and the market return exposures to expected

growth, good uncertainty, and bad uncertainty risks. The notations †, ∗, and � indicate the significance of the coefficients at 10%, 5%, and 1%

levels respectively, against the economically-motivated, alternative one-sided hypotheses, specified in earlier Tables. Data are annual from 1930 to

2012 (post-war for R&D).

x Vb Vg Ad j − R2

Panel A: Aggregate Growth Rate Predictability

Consumption Growth 2.11� −63.49 21.41 0.48

[4.80] [−1.03] [0.79]

GDP Growth 7.22� −910.48† 460.51† 0.13

[2.69] [−1.39] [1.29]

Market Dividend Growth 7.26� 76.37 −154.09 0.29

[3.41] [0.29] [−1.18]

Earnings Growth 13.05� −401.02 75.59 0.09

[2.69] [−0.67] [0.26]

Capital Investment Growth 24.56� −1574.59† 885.52∗ 0.32

[3.65] [−1.59] [2.01]

R&D Investment Growth 4.11� −1046.42∗ 594.90∗ 0.22

[4.92] [−1.95] [1.77]

Panel B: Aggregate Asset Prices

Level-Based Projections:

Market price-dividend ratio 3.60 −588.21 −470.52 0.17

[0.43] [−0.47] [−1.09]

Real Risk-Free Rate −0.44 −106.17† 39.29† 0.07

[−0.71] [−1.45] [1.53]

Default Spread −0.44� 63.02� −13.20 0.45

[−2.43] [2.66] [−1.15]

First Difference-Based Projections:

∆Market price-dividend ratio 21.25� −706.94∗ 367.33� 0.52

[9.35] [−2.23] [3.22]

∆Real Risk-Free Rate 0.36† −111.12∗ 41.35† 0.15

[1.53] [−2.17] [1.57]

∆Default Spread −0.33� 33.99� −11.47∗ 0.22

[−2.83] [2.52] [−2.28]

Panel C: Asset-Pricing Implications

Prices of Risk (Λ/100) 1.04� −18.65 36.98†

[3.53] [−0.52] [1.58]

Market Exposures (β/100) 30.92� −1452.43� 811.16�

[15.11] [−3.82] [6.33]
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Table 11. Industrial production-based uncertainties with shifted cutoff.

The table presents a summary of the macroeconomic and asset-price evidence using alternative measures of good and bad uncertainty based on

monthly industrial-production data, computed under a shifted cutoff for the good and bad uncertainty observations. The ex-post positive (negative)

semivariance is computed using observations above (below) the 75th percentile of industrial production growth. Panel A documents the slope

coefficients, t−statistics and the R2 in the projections of one-year ahead macroeconomic growth rates on the expected growth x, good uncertainty

Vg, and bad uncertainty Vb. Panel B shows the evidence from the contemporaneous regressions of the aggregate asset prices on these factors. Panel

C shows the estimates of the market prices of risks and the market return exposures to expected growth, good uncertainty, and bad uncertainty risks.

The notations †, ∗, and � indicate the significance of the coefficients at 10%, 5%, and 1% levels respectively, against the economically-motivated,

alternative one-sided hypotheses, specified in earlier Tables. Data are annual from 1930 to 2012 (post-war for R&D).

x Vb Vg Ad j − R2

Panel A: Aggregate Growth Rate Predictability

Consumption Growth 2.01� −80.25† 16.91 0.52

[5.14] [−1.56] [1.09]

GDP Growth 4.48� −680.39† 229.82† 0.05

[6.60] [−1.58] [1.50]

Market Dividend Growth 8.78� −459.88∗ 38.09 0.40

[4.37] [−1.96] [0.50]

Earnings Growth 12.26� −724.71 129.06 0.10

[3.58] [−1.19] [0.60]

Capital Investment Growth 24.08� −2319.51∗ 830.56� 0.38

[4.28] [−2.31] [2.65]

R&D Investment Growth 4.39� −724.28� 582.91∗ 0.28

[4.02] [−2.73] [2.31]

Panel B: Aggregate Asset Prices

Level-Based Projections:

Market price-dividend ratio 10.46 −3075.22� 493.02† 0.24

[1.16] [−2.96] [1.49]

Real Risk-Free Rate −0.02 −226.10∗ 73.65� 0.19

[−0.03] [−2.14] [2.51]

Default Spread −0.41� 72.97� −10.93† 0.52

[−2.42] [4.30] [−1.40]

First Difference-Based Projections:

∆Market price-dividend ratio 18.54� −1588.31� 445.77� 0.61

[10.25] [−4.72] [3.58]

∆Real Risk-Free Rate −0.01 −117.20† 28.81 0.14

[−0.06] [−1.53] [1.10]

∆Default Spread −0.28� 57.12� −14.03∗ 0.39

[−2.89] [3.13] [−2.21]

Panel C: Asset-Pricing Implications

Prices of Risk (Λ/100) 0.94� −76.20∗ 37.39∗

[4.32] [−1.73] [2.06]

Market Exposures (β/100) 24.39� −1642.30� 560.40�

[16.86] [−5.18] [4.19]
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Table 12. Earnings-based uncertainties.

The table presents a summary of the macroeconomic and asset-price evidence using alternative measures of good and bad uncertainty based on

monthly corporate earnings data. Panel A documents the slope coefficients, t−statistics and the R2 in the projections of one-year ahead macroeco-

nomic growth rates on the expected growth x, good uncertainty Vg, and bad uncertainty Vb. Panel B shows the evidence from the contemporaneous

regressions of the aggregate asset prices on these factors. Panel C shows the estimates of the market prices of risks and the market return exposures

to expected growth, good uncertainty, and bad uncertainty risks. The notations †, ∗, and � indicate the significance of the coefficients at 10%, 5%,

and 1% levels respectively, against the economically-motivated, alternative one-sided hypotheses, specified in earlier Tables. Data are annual from

1930 to 2012 (post-war for R&D).

x Vb Vg Ad j − R2

Panel A: Aggregate Growth Rate Predictability

Consumption Growth 1.86� −160.58∗ 41.10∗ 0.53

[7.10] [−2.00] [1.97]

GDP Growth 4.86∗ −371.75� 98.78� 0.05

[2.00] [−2.73] [2.84]

Market Dividend Growth 6.28� −1448.37� 354.80� 0.37

[3.01] [−3.99] [3.85]

Earnings Growth 4.12 −1319.52† 166.00 0.21

[0.67] [−1.60] [0.86]

Capital Investment Growth 18.98� −3498.01� 901.57� 0.43

[5.40] [−3.17] [3.21]

R&D Investment Growth 2.63� 720.54� −195.27� 0.26

[2.72] [2.55] [−2.69]

Panel B: Aggregate Asset Prices

Level-Based Projections:

Market price-dividend ratio 2.38 −5282.53� 1377.15� 0.13

[0.37] [−2.59] [2.66]

Real Risk-Free Rate −0.40 51.03 −24.48 −0.01

[−0.39] [0.25] [−0.44]

Default Spread −0.08 76.82∗ −15.42 0.19

[−0.51] [1.68] [−1.26]

First Difference-Based Projections:

∆Market price-dividend ratio 16.81� −1688.33� 399.38� 0.61

[7.89] [−4.93] [4.48]

∆Real Risk-Free Rate −0.44 −74.01∗ 12.36 0.05

[−0.96] [−2.02] [1.24]

∆Default Spread −0.09 39.07† −6.31 0.44

[−1.15] [1.28] [−0.81]

Panel C: Asset-Pricing Implications

Prices of Risk (Λ/100) 0.46 −238.78� 69.48�

[1.24] [−3.32] [3.19]

Market Exposures (β/100) 25.68� −1502.40� 401.75�

[13.54] [−6.92] [7.49]
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Table 13. Benchmark uncertainties: post-war sample.

The table presents a summary of the macroeconomic and asset-price evidence using the benchmark uncertainty measures in the post-war period.

Panel A documents the slope coefficients, t−statistics and the R2 in the projections of one-year ahead macroeconomic growth rates on the expected

growth x, good uncertainty Vg, and bad uncertainty Vb. Panel B shows the evidence from the contemporaneous regressions of the aggregate asset

prices on these factors. Panel C shows the estimates of the market prices of risks and the market return exposures to expected growth, good

uncertainty, and bad uncertainty risks. The notations †, ∗, and � indicate the significance of the coefficients at 10%, 5%, and 1% levels respectively,

against the economically-motivated, alternative one-sided hypotheses, specified in earlier Tables. Data are annual from 1947 to 2012.

x Vb Vg Ad j − R2

Panel A: Aggregate Growth Rate Predictability

Consumption Growth 1.43� −275.72� 123.23� 0.41

[6.27] [−3.57] [2.88]

GDP Growth 2.27† −1127.75� 1174.93∗ 0.44

[1.33] [−2.41] [2.09]

Market Dividend Growth 2.41 −362.83 136.85 −0.01

[1.26] [−0.59] [0.51]

Earnings Growth 11.39∗ −1941.22 666.54 0.02

[1.78] [−0.77] [0.67]

Capital Investment Growth 8.33� −2231.30� 1813.75� 0.42

[3.45] [−4.51] [3.88]

Panel B: Aggregate Asset Prices

Level-Based Projections:

Market price-dividend ratio −5.92 −3987.38† −1011.95 0.34

[−0.65] [−1.59] [−0.75]

Real Risk-Free Rate 1.32� −440.50� 80.05 0.37

[3.04] [−2.35] [1.12]

Default Spread −0.41� 113.33∗ −49.41∗ 0.33

[−3.15] [1.66] [−2.11]

First Difference-Based Projections:

∆Market price-dividend ratio 20.93� −2740.74� 665.55� 0.61

[12.62] [−4.31] [2.70]

∆Real Risk-Free Rate 0.37 −364.57� 174.82� 0.46

[1.09] [−3.39] [5.60]

∆Default Spread −0.40� 122.58� −4.44 0.61

[−3.63] [2.99] [−0.77]

Panel C: Asset-Pricing Implications

Prices of Risk (Λ/100) 0.82� −74.95� 38.15�

[4.87] [−2.81] [3.43]

Market Exposures (β/100) 28.84� −2912.56� 938.32�

[11.35] [−4.74] [2.57]
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Fig. 1. Total realized variance. The figure shows the time series plot of the total realized variance smoothed over a 3-year window. The total

realized variance is based on the sum of squared observations of demeaned monthly industrial production growth over 1-year, re-scaled to match

the unconditional variance of consumption growth. The shaded areas represent NBER recessions.
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Fig. 2. Residual positive variance. The figure shows the time series plot of the residual positive variance, smoothed over a 3-year window, which

is orthogonal to the negative variance. The positive and negative realized semivariances decompose the total realized variance into the components

pertaining only to positive and negative movements in industrial production growth, respectively. The residual positive variance is computed from

the projection of the positive realized semivariance onto the negative one. The shaded areas represent NBER recessions.
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Fig. 3. Realized and predictive log volatilities. The figure shows the time series plots of the log positive (left Panel) and negative (right Panel)

realized variances and their predictive values from the projection. The shaded areas represent NBER recessions. The benchmark predictive variables

in the projection include positive and negative realized semivariances, consumption growth rate, the real-market return, the market price-dividend

ratio, the real risk-free rate, and the default spread.
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Fig. 4. Total ex-ante uncertainty. The figure shows the time series plot of the total ex-ante uncertainty. The total ex-ante uncertainty is constructed

from the predictive regressions of future overall realized variance. The shaded areas represent NBER recessions.
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Fig. 5. Residual good uncertainty. The figure shows the time series plot of the residual good uncertainty which is orthogonal to the bad uncertainty.

The good and bad uncertainties are constructed from the predictive regressions of future realized positive and negative variances, respectively. The

residual good uncertainty is computed from the projection of good uncertainty onto bad uncertainty. The shaded areas represent NBER recessions.
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(a) GDP Growth Response to Good Uncertainty Shock
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(b) GDP Growth Response to Bad Uncertainty Shock
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(c) GDP Growth Response to Total Uncertainty Shock
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Fig. 6. Impulse response of GDP to macro uncertainties. The figure shows impulse responses of private GDP growth to one-standard deviation

good, bad, and total uncertainty shocks. The impulse responses are computed from a VAR(1) which includes macroeconomic uncertainty measures

(bad and good uncertainty for the first two panels, and total uncertainty for the last panel), expected consumption growth, and GDP growth rate.

Data are annual from 1930 to 2012.

52



(a) Capital Investment Growth Response to Good Uncertainty Shock
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(b) Capital Investment Growth Response to Bad Uncertainty Shock
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(c) Capital Investment Growth Response to Overall Uncertainty Shock
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Fig. 7. Impulse response of capital investment to macro uncertainties. The figure shows impulse responses of capital investment growth to one-

standard deviation good, bad, and total uncertainty shocks. The impulse responses are computed from a VAR(1) which includes macroeconomic

uncertainty measures (bad and good uncertainty for the first two panels, and total uncertainty for the last panel), expected consumption growth, and

capital investment growth rate. Data are annual from 1930 to 2012.
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(a) R&D Investment Growth Response to Good Uncertainty Shock
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(b) R&D Investment Growth Response to Bad Uncertainty Shock
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(c) R&D Investment Growth Response to Overall Uncertainty Shock
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Fig. 8. Impulse response of R&D investment to macro uncertainties. The figure shows impulse responses of R&D investment growth to one-

standard deviation good, bad, and total uncertainty shocks. The impulse responses are computed from a VAR(1) which includes macroeconomic

uncertainty measures (bad and good uncertainty for the first two panels, and total uncertainty for the last panel), expected consumption growth, and

R&D investment growth rate. Data are annual from 1954 to 2008.
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(a) Price-Dividend Ratio Response to Good Uncertainty Shock
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(b) Price-Dividend Ratio Response to Bad Uncertainty Shock
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(c) Price-Dividend Ratio Response to Overall Uncertainty Shock
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Fig. 9. Impulse response of price-dividend ratio to macro uncertainties. The figure shows impulse responses of the market price-dividend ratio

to one-standard deviation good, bad, and total uncertainty shocks. The impulse responses are computed from a VAR(1) which includes macroe-

conomic uncertainty measures (bad and good uncertainty for the first two panels, and total uncertainty for the last panel), expected consumption

growth, and the market price-dividend ratio. Data are annual from 1930 to 2012.
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(a) Price-Earnings Ratio Response to Good Uncertainty Shock
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(b) Price-Earnings Ratio Response to Bad Uncertainty Shock
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(c) Price-Earnings Ratio Response to Overall Uncertainty Shock
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Fig. 10. Impulse response of price-earnings ratio to macro uncertainties. The figure shows impulse responses of the market price-earnings ratio

to one-standard deviation good, bad, and total uncertainty shocks. The impulse responses are computed from a VAR(1) which includes macroe-

conomic uncertainty measures (bad and good uncertainty for the first two panels, and total uncertainty for the last panel), expected consumption

growth, and the market price-earnings ratio. Data are annual from 1930 to 2012.
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